Python数据分析笔记#5.1 Numpy-多维数组
off999 2024-12-04 14:37 18 浏览 0 评论
「目录」
- Numpy介绍
- Numpy的多维数组
- 创建多维数组
- 多维数组的数据类型
- Numpy数组的运算
- Numpy数组的索引和切片
- 数组转置和轴对换
Numpy简介
Numpy(Numerical Python)是Python数值计算最重要的基础包。
Numpy的功能:
- ndarray,多维数组,具有矢量运算和复杂广播能力,且节省空间。
- 不需要编写循环就可以对整组数据进行快速运算的函数。
- 读写磁盘的工具。
- 线性代数,随机数生成,傅里叶变换功能。
- 集成C,C++,Fortran等语言编写的C API
Numpy对于数值计算特别重要的原因之一是,高效的处理大数组的数据。
原因:
- 比起Python的内置序列,Numpy数组使用的内存更少。
- Numpy可以在整个数组上执行复杂运算,不需要Python的for循环
基于Numpy的算法要比纯Python快10到100倍(或更快),并且使用内存更少。
Numpy的ndaray:多维数组
ndarray是一个快速而灵活的大数据集容器,我们可以利用这种数组对整块数据执行数学运算。
ndarray中所有元素必须相同类型。
创建ndarray
可以使用array函数创建Numpy数组,array函数接收一切序列型对象,例如我们可以把一个列表转化为数组:
In [1]: import numpy as np在导入numpy库时,惯例给他取个更简短的名字叫np
In [2]: data1 = [6, 7.5, 8, 0, 1]
In [3]: arr1 = np.array(data1)
In [4]: arr1
Out[4]: array([6. , 7.5, 8. , 0. , 1. ])
如果是嵌套列表会被转化为多维数组:
In [5]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
In [6]: arr2 = np.array(data2)
In [7]: arr2
Out[7]:
array([[1, 2, 3, 4],
[5, 6, 7, 8]])
用属性ndim和shape可以查看数组的维度:
In [8]: arr2.ndim
Out[8]: 2
数组有2个维度
In [9]: arr2.shape
Out[9]: (2, 4)
这是2*4的数组,有2个维度,第一个维度大小为2,第二个维度大小为4
我们还可以查看数组的数据类型:
In [10]: arr1.dtype
Out[10]: dtype('float64')
In [11]: arr2.dtype
Out[11]: dtype('int32')
数组arr1的数据类型是64位浮点数float,数组arr2的数据类型是32位整数int
可以使用np.zeros创建全是0的数组:
In [12]: np.zeros(10)
Out[12]: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
In [13]: np.zeros((3, 6))
Out[13]:
array([[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.]])
用np.empty创建一个没有具体值的数组:
In [14]: np.empty((2, 3, 2))
Out[14]:
array([[[0., 0.],
[0., 0.],
[0., 0.]],
[[0., 0.],
[0., 0.],
[0., 0.]]])empty不代表返回全0数组,而是为初始化的垃圾值
arange是Python内置函数range的numpy版本:
In [15]: np.arange(15)
Out[15]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
下面的表格列出了其他创建数组的函数:
ndarray的数据类型
dtype(data type数据类型),将一块内存解释为特定数据类型:
In [15]: np.arange(15)
Out[15]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
In [16]: arr1 = np.array([1, 2, 3], dtype=np.float64)
In [17]: arr2 = np.array([1, 2, 3], dtype=np.int32)
In [18]: arr1.dtype
Out[18]: dtype('float64')
In [19]: arr2.dtype
Out[19]: dtype('int32')
我们来看看Numpy的数据类型有哪些:
我们可以通过ndarray的astype方法将一个数组从一个dtype转换为另一个dtype,例如我们把整数转换成浮点数:
In [20]: arr = np.array([1, 2, 3, 4, 5])
In [21]: arr.dtype
Out[21]: dtype('int32')
In [22]: float_arr = arr.astype(np.float64)
In [23]: float_arr.dtype
Out[23]: dtype('float64')
使用astype总会创建一个新的数组
Numpy数组的运算
Numpy数组使得我们可以不用编写循环就可对数据进行批量运算。大小相等的数组之间的任何算数运算都会作用到每个元素,看下面的例子就懂了:
In [24]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])
In [25]: arr
Out[25]:
array([[1., 2., 3.],
[4., 5., 6.]])
In [26]: arr * arr
Out[26]:
array([[ 1., 4., 9.],
[16., 25., 36.]])
In [27]: arr - arr
Out[27]:
array([[0., 0., 0.],
[0., 0., 0.]])
In [28]: 1 / arr
Out[28]:
array([[1. , 0.5 , 0.33333333],
[0.25 , 0.2 , 0.16666667]])
In [29]: arr ** 0.5
Out[29]:
array([[1. , 1.41421356, 1.73205081],
[2. , 2.23606798, 2.44948974]])两个乘号是次方
大小相同的数组间比较则会生成布尔值:
In [32]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])
In [33]: arr2
Out[33]:
array([[ 0., 4., 1.],
[ 7., 2., 12.]])
In [34]: arr2 > arr
Out[34]:
array([[False, True, False],
[ True, False, True]])Numpy数组的索引和切片
索引和切片就是选取数据的单个元素或子集。
一维数组
一维数组的索引和切片很简单,直接看例子就会了:
In [35]: arr = np.arange(10)
In [36]: arr
Out[36]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
索引
In [37]: arr[5]
Out[37]: 5
切片
In [38]: arr[5:8]
Out[38]: array([5, 6, 7])
当我们将一个标量值赋值给一个切片时,该值会自动传播(就是之前说的广播broadcast)到整个选区。
In [39]: arr[5:8] = 12
In [40]: arr
Out[40]: array([ 0, 1, 2, 3, 4, 12, 12, 12, 8, 9])
和列表切片的区别是,数组切片的数据不会复制,修改数组切片的数据会改变源数组。举个例子,先创建一个切片:
In [41]: arr_slice = arr[5:8]
In [42]: arr_slice
Out[42]: array([12, 12, 12])
修改切片的值:
In [43]: arr_slice[1] = 12345
查看源数组:
In [44]: arr
Out[44]:
array([ 0, 1, 2, 3, 4, 12, 12345, 12, 8,
9])
你可能惊讶的发现源数组也变了,所以切片就是原始数组的视图。
我猜这样的方式节省了内存,而且频繁的复制也降低了性能。
高维数组
高维数组能做的事情更多。我们先来看二维数组,三维,四维以及以上同理。
In [45]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
In [46]: arr2d
Out[46]:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
我们查看第3行(第1个维度的第3个)的元素:
In [47]: arr2d[2]
Out[47]: array([7, 8, 9])
查看第1行第3列(第一个维度的第1个,第二个维度的第3个)的元素:
In [48]: arr2d[0][2]
Out[48]: 3
也可以用逗号把两个维度隔开:
In [49]: arr2d[0, 2]
Out[49]: 3
下面一张图也可以帮你理解下二维数组的索引方式,轴0是行,轴1是列:
所以总结一下,在多维数组中省略一个索引,就会返回维度低一个的数组
切片索引
ndarray的切片索引和Python列表的差不多:
一维数组切片:
In [50]: arr
Out[50]:
array([0, 1, 2, 3, 4, 12, 12345, 12, 8, 9])
In [51]: arr[1:6]
Out[51]: array([ 1, 2, 3, 4, 12])
二维数组切片:
In [52]: arr2d
Out[52]:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
In [53]: arr2d[:2]
Out[53]:
array([[1, 2, 3],
[4, 5, 6]])
可以看出这是沿着第一个维度切的(选取元素),arr2d[:2]的意思是选取数组的前两行。
也可以传入多个切片:
In [54]: arr2d[:2, 1:]
Out[54]:
array([[2, 3],
[5, 6]])
这里是选取第一个维度的前2个元素和第二个维度的第2个开始以后的元素。
没看懂的话,再看下面这张二维数组切片的图:
布尔型索引
先看书中的例子,有两个数组,一个存储名字,一个存储对应的数据(随机生成正态分布的数据)。
In [55]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
In [56]: data = np.random.randn(7, 4)
In [57]: names
Out[57]: array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'], dtype='<U4')
In [58]: data
Out[58]:
array([[ 1.21248078, -0.24511897, -0.8038279 , -0.35952465],
[ 0.1328127 , 0.42250842, 1.58394523, 0.89735295],
[ 1.12462729, 0.86692028, -0.12374883, -1.73496697],
[-1.14994201, 1.4784484 , 0.24536034, -0.01059576],
[ 2.47572411, 0.18740736, 0.72617462, 0.91062184],
[-0.74338633, -0.73775303, -0.5307526 , 0.34192921],
[ 0.55185502, -2.79753615, -1.38174436, 0.24901321]])
如果我们要选出Bob的数据,我们先用names数组和字符串"Bob"作比较,产生一个布尔型数组:
In [59]: names == 'Bob'
Out[59]: array([ True, False, False, True, False, False, False])
这个布尔型数组可以作为索引传入:
In [60]: data[names == 'Bob']
Out[60]:
array([[ 1.21248078, -0.24511897, -0.8038279 , -0.35952465],
[-1.14994201, 1.4784484 , 0.24536034, -0.01059576]])
这样就找到了Bob对应的数据。
注意布尔型数组的长度要和被索引的轴长度一致,不然报错。
同样还可以使用不等符号(!=),否定符号(~),与(&),或(|)等布尔类运算符
花式索引
花式索引(Fancy indexing,这竟然是个Numpy术语),指的是利用整数数组进行索引。假设有个8*4的数组:
In [61]: arr = np.empty((8, 4))
In [62]: for i in range(8):^M
...: arr[i] = i
...:
In [63]: arr
Out[63]:
array([[0., 0., 0., 0.],
[1., 1., 1., 1.],
[2., 2., 2., 2.],
[3., 3., 3., 3.],
[4., 4., 4., 4.],
[5., 5., 5., 5.],
[6., 6., 6., 6.],
[7., 7., 7., 7.]])
为了选取特定顺序的行(子集),我们可以传入一个指定顺序的整数列表或ndarray(这里我们选第4,3,0,6行):
In [64]: arr[[4, 3, 0, 6]]
Out[64]:
array([[4., 4., 4., 4.],
[3., 3., 3., 3.],
[0., 0., 0., 0.],
[6., 6., 6., 6.]])
花式索引和切片不一样的地方在于,它会把数据复制到新数组中。
数组转置和轴对换
对数组进行转置有transpose方法和T属性:
In [65]: arr = np.arange(15).reshape((3, 5))
In [66]: arr
Out[66]:
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
In [67]: arr.T
Out[67]:
array([[ 0, 5, 10],
[ 1, 6, 11],
[ 2, 7, 12],
[ 3, 8, 13],
[ 4, 9, 14]])
reshape方法可以重塑一个数组的维度,这里把一维的长度为15的元素改变为2维的3*5数组
高维数组,需要由轴编号组成的元组对这些轴转置:
In [68]: arr = np.arange(16).reshape((2, 2, 4))
In [69]: arr
Out[69]:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
In [70]: arr.transpose((1, 0, 2))
Out[70]:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
这里第一个轴变成了第二个,第二个轴变成了第一个,最后一个不变。两种方法都是在进行轴对换。
下篇见!
相关推荐
- xp系统永久激活密钥2020年(xp系统激活秘钥)
-
windowsxp产品密钥大全YBVJB-YV2JW-7FHPT-6D8XG-RT83GHRXTR-FKTCV-X8QCH-D7PTH-KYYPBJF8MD-XB4Y4-HHB28-Q3G2K-QW...
- 手写中文输入法下载安装(中文手写输入器)
-
1、首先第一步就是打开手机主界面,然后依次打开“设置”、“通用”、“键盘”,2、跳转的页面再点击“键盘”,3、勾选自己喜欢的中文手写模式,最后点击设定即可。仅参考先打开手机设置,然后点击一个语言和输入...
- office2007的产品密钥(office 产品密钥)
-
下载一个kms软件关闭杀毒软件大概三十秒就会完成相应的注册然后就可以正常的使用了
- 十大杀毒app排行(知名杀毒软件)
-
360安全卫士今天就为您推荐杀毒软件排行榜第一的免费软件——360安全卫士,首创即扫即清功能,操作流程更简单,而且在用户使用过程当中还能有效拦截病毒的侵入,提供强力守护。状元:BitDefender ...
- 笔记本怎么关闭防火墙(笔记本怎么关掉防火墙)
-
Win10教育版关闭防火墙设置方法 步骤1、在Win10桌面这台电脑图标上右键,然后选择“属性”。 步骤2、进入这台电脑属性之后,再点击左上角的“控制面板主页”。 步骤3、进入Win10控制面板...
- 32g内存还需要虚拟内存吗(32g内存还需要虚拟内存吗 知乎)
-
还需要的。虚拟内存是一定要的。就算你32G内存也是需要一个虚拟的转换空间。这个可以自己手动设置7000M左右就可以了,不用设置太大,没有用。虚拟内存是一定要的。就算你32G内存也是需要一个虚拟的...
- windows补丁怎么更新(windows 补丁更新)
-
windowsserver系统补丁升级的方法,1.打开WindowsServer系统运行对话框;2.在对话框中输入“control”;3.系统控制面板窗口自动打开;4.点击“Systemand...
- 电脑打不开了怎么重装系统(电脑打不开怎么重装系统不用u盘)
-
1、在可用电脑上制作好U盘启动盘,将下载的电脑系统iso文件直接复制到U盘的GHO目录下;2、在开不了机的电脑上插入U盘,重启后不停按F12或F11或Esc等快捷键打开启动菜单,选择U盘选项回车,比如...
- 一键清理垃圾下载(一键清除垃圾软件下载)
-
手机弹出广告是因为手机上的软件自动推送广告,可以在手机设置里关闭应用的消息通知,方法如下:1、找到手机设置,点击进入2、找到应用和通知,点击进入3、点击通知管理,点击进入4、我们可以看到自己开启消息通...
- ghost下载中文版官网(ghost8.0下载)
-
如果你下载的ghostwin7文件如果是用于系统安装。是不是映像文件要符合以下要求:1,压缩包完好无损。2,减压后的映像文件后缀名为ISO或者GHO.3,文件要在硬盘根目录才便于识别。4,映像文件后缀...
- win10最新版本是多少2025(win10最新版本是20h2吗)
-
1、打开软件,选择需要安装的win10系统。(4g以上内存选择64位系统)2、接着我们耐心等待下载重装资源。3、资源下载完成后,等待环境部署完毕重启即可。4、进入到pe系统后,打开小白工具,选择安装的...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
慕ke 前端工程师2024「完整」
-
失业程序员复习python笔记——条件与循环
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
