Python 中的 requirements.txt 与 setup.py
off999 2024-12-07 15:55 15 浏览 0 评论
Python 中 requirements.txt、setup.py 和 setup.cfg 的用途
新手而言管理 Python 项目中的依赖项是非常具有挑战性的,这个问题是由历史原因引起的并且一直被吐槽。
在今天的文章中,我们将讨论如何正确管理 Python 项目的依赖关系。 更具体地说,将讨论 requirements.txt 文件的用途以及如何使用 setuptools 来分发自定义的Python 包并让其他用户进一步使用和开发它。除此以外还将讨论设置文件(即 setup.cfg 和 setup.py)的用途以及如何将它们与需求文件一起使用,这样可以使包开发和重新分发的过程变得更容易。
Python项目的依赖关系是什么
让我们从包依赖开始;介绍它们到底是什么以及如何正确管理它们,因为这样可以使以使 Python 项目变得更容易维护。
简单来说,依赖项是我们Python项目所依赖的外部其他的Python 包,例如在AI方向,用到最多的包就是Numpy和Pandas。在 Python 中,这些依赖通常可以在 Python 包索引 (PyPI) 或其他管理工具中找到(例如 Nexus),后面我们都以PyPI为例介绍,因为它是最常用而且大家都在用的包管理工具。
现在我们自己的 Python 项目中可能需要引用某个特定版本的第三方包有依赖。这种情况可能会导致依赖冲突的出现,因为我们所有的依赖中(至少)有两个依赖项可能依赖同一个包,但每个依赖项都需要该外部包的特定版本(比如一个需要1.0,而一个需要2.0)。这种特殊的情况我们需要告诉 pip 需要如何处理依赖关系以及我们需要哪些特定版本。
一般情况下,我们需要requirements.txt 来指定项目的依赖包和版本,所以我们先看看requirements.txt的格式
requirements.txt 文件
requirements.txt 是一个文件,列出了 Python 项目的所有依赖项。 如前所述,它还可能包含依赖项的依赖项。 列除了依赖包名称外,还可以指定特定的版本(使用 ==)、>=或<=,甚至两者都指定。
示例 requirements.txt 文件
matplotlib>=2.2
numpy>=1.15.0, <1.21.0
pandas
pytest==4.0.1
然后就可以使用以下命令通过 pip 安装这些依赖项(通常在虚拟环境中):
pip install -r requirements.txt
在上面的示例中,我们指定了一些依赖项。例如,对于没有关联版本的的 pandas 包,pip 将正常安装最新版本,除非其他依赖项之一与它有任何冲突(如果有冲突,pip 将安装满足其余依赖项指定条件的最新 pandas 版本)。对于 pytest,包管理器将安装特定版本(即 4.0.1),而对于 matplotlib,将安装至少大于或等于 2.2 的最新版本(这还是取决于是否有其他依赖项具体要求,如果没有则会安装符合条件的最新版) 。对于 numpy 包,pip 将尝试安装 1.15.0(包含)和 1.21.0(不包含)之间的最新版本。
在安装所有依赖项后,可以通过运行 pip freeze 来查看虚拟环境中安装的每个依赖项的确切版本。此命令将列出所有包及其特定版本(即 ==)。
requirements.txt 非常有用,但他只针对于我们项目的开发和发布(例如线上部署等)。如果你想将你代码发布到 PyPI 供其他人使用,那么需要的不仅仅是这个文件。
Python 中的setuptools
setuptools 是构建在 distutils 之上的包,它可以帮助开发人员快速发布 Python 包。 除此以外它还提供了使依赖管理更容易的功能。
当想要发布一个包时,通常需要填写一些元数据,例如包名、版本、依赖项、入口点等。 setuptools 就提供了简化这些操作的功能。
项目的元数据等信息需要 在setup.py 文件中定义,例如下面的demo:
from setuptools import setup
setup(
name='demo',
author='deephub',
version='0.1',
install_requires=[
'pandas',
'numpy',
'matplotlib',
],
# ... more options/metadata
)
我们所填写的信息都是纯声明性的,所以一个更好的方法是在名为 setup.cfg 的文件中定义这些元数据和信息,然后只需在 setup.py 文件中调用 setup ()即可。 setup.cfg 文件如下所示:
[metadata]
name = demo
author = deephub
version = 0.1
[options]
install_requires =
pandas
numpy
matplotlib
这样在我们的 setup.py 文件中只需要保留最少的代码:
from setuptools import setup
if __name__ == "__main__":
setup()
上面install_requires 参数与requirements.txt 类似,可以使用运算符 <、>、<=、> =、== 或!=,后跟版本标识符。当项目安装时会根据该配置来下载和安装依赖。
我们需要 requirements.txt 和 setup.py/setup.cfg 文件吗?
这就需要分情况对待了。首先 requirements.txt 与 setup.py 之间的通常用于实现不同的需求:
- 如果主要用于项目开发目的,并且不打算发布到pypi上,则 requirements.txt 就足够了(即使该包是在多台机器上开发的)
- 如果包仅在单机开发,但是需要把他作为pip的包发布到pypi上,那么 setup.py/setup.cfg 就足够了。
- 如果包是在多台机器上开发的并且还需要把他发布到pypi上,这就需要 requirements.txt (多个机器需要相同的开发环境)和 setup.py/setup.cfg 文件(发布到pypi上)。
另外就是如果同时使用两者,setup.py( setup.cfg)文件应包含抽象依赖项列表,而 requirements.txt 文件必须包含具有每个包版本的特定引脚的具体依赖项(使用 = = 指定特定版本)。
以下是Python文档中官方的定义:
install_requires(即 setup.py)定义了单个项目的依赖关系,而requirements.txt 通常用于定义完整 Python 环境。
尽管 install_requires 要求很少,但requirements.txt 通常包含详尽的固定版本列表,以实现完整环境的可重复安装。
总结
本文中讨论了在开发 Python 项目和应用程序时适当的依赖管理的重要性。并且介绍了 requirements.txt 文件的用途以及如何将它与 setuptools 的配置文件(即 setup.py 和 setup.cfg)一起使用,这样可以保证其他开发人员可以安装、运行、开发甚至测试源代码Python 包的代码。
setuptools 并不能完全替代 requirements.txt 文件。并且在大多数情况下,可能需要这两个文件同时存在,这样才能够正确管理包依赖和进行包的发布。
作者:Giorgos Myrianthous
相关推荐
- 独家 | 5 个Python高级特性让你在不知不觉中成为Python高手
-
你已经使用Python编程了一段时间,编写脚本并解决各种问题。是你的水平出色吗?你可能只是在不知不觉中利用了Python的高级特性。从闭包(closure)到上下文管理器(contextmana...
- Python装饰器
-
Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...
- 中高阶Python常规用法--上下文管理器
-
Python以简单性和通用性著称,是一种深受全球开发人员喜爱的编程语言。它提供了大量的特性和功能,使编码成为一种愉快的体验。在这些功能中,一个经常被新手忽视的强大工具是上下文管理器。上下文管理器是高...
- Python小案例67- 装饰器
-
Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...
- python常用的语法糖
-
概念Python的语法糖(SyntacticSugar)是指那些让代码更简洁、更易读的语法特性,它们本质上并不会增加新功能,但能让开发者更高效地编写代码。推导式写法推导式是Python最经典的...
- python - 常用的装饰器 decorator 有哪些?
-
python编程中使用装饰器(decorator)工具,可以使代码更简洁清晰,提高代码的重用性,还可以为代码维护提供方便。对于python初学者来说,根据装饰器(decorator)的字面意思并不...
- python数据缓存怎么搞 ?推荐一个三方包供你参考,非常简单好用。
-
1.数据缓存说明数据缓存可以说也是项目开发中比不可少的一个工具,像我们测试的系统中,你都会见到像Redis一样的数据缓存库。使用缓存数据库的好处不言而喻,那就是效率高,简单数据直接放在缓存中...
- 用于时间序列数据的Graphite监视工具
-
结合第三方工具,Graphite为IT性能监控提供了许多好处。本文介绍其核心组件,包括Carbon、Whisper以及安装的基本准则。Graphite监视工具可实时或按需,大规模地绘制来自多个来源的时...
- Python3+pygame实现的坦克大战
-
一、显示效果二、代码1.说明几乎所有pygame游戏,基本都遵循一定的开发流程,大体如下:初始化pygame创建窗口while循环检测以及处理事件(鼠标点击、按键等)更新UI界面2.代码创建一个m...
- Python之鸭子类型:一次搞懂with与上下文装饰器
-
引言在鸭子类型的理念的基础之上,从关注类型,转变到关注特性和行为。结合Python中的魔法函数的体系,我们可以将自定义的类型,像内置类型一样被使用。今天这篇文章中,接着该话题,继续聊一下with语法块...
- Python必会的50个代码操作
-
学习Python时,掌握一些常用的程序操作非常重要。以下是50个Python必会的程序操作,主要包括基础语法、数据结构、函数和文件操作等。1.HelloWorldprint("Hello,...
- 一文掌握Python 中的同步和异步
-
同步代码(Sync)同步就像在一个流水线上工作,每个任务都等待前一个任务完成。示例:机器A切割钢板→完成后,机器B钻孔→完成后,机器C上色。在Python中,同步代码看起来像这样:im...
- python 标注模块timeit: 测试函数的运行时间
-
在Python中,可以使用内置的timeit模块来测试函数的运行时间。timeit模块提供了一个简单的接口来测量小段代码的执行时间。以下是使用timeit测试函数运行时间的一般步骤:导入...
- Python带你找回童年的万花尺
-
还记得小时候的万花尺吧?这么画:一点也不费脑筋,就可以出来这么多丰富多彩的复杂几何图形。具体而言,可以用万花尺玩具(如图2-1所示)来绘制数学曲线。这种玩具由两个不同尺寸的塑料齿轮组成,一大一小。小的...
- Python 时间模块深度解析:从基础到高级的全面指南
-
直接上干货一、时间模块核心类介绍序号类名说明1datetime.datetime表示一个具体的日期和时间,结合了日期和时间的信息。2datetime.date表示一个具体的日期。3datetime.t...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)