百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

利用Python与Seaborn实现热力图

off999 2024-12-10 19:20 16 浏览 0 评论

在数据分析与机器学习领域,理解数据集各变量之间的相关性至关重要。相关性矩阵能够量化变量间的线性关系强度,而将其以热力图的形式呈现,则可直观展现这种关系的全貌。本文将深入探讨如何使用Python中的Seaborn库绘制相关性矩阵热力图,结合具体代码示例,带领大家领略这一可视化工具的魅力及其在实际项目中的应用价值。

相关性矩阵与热力图简介

相关性矩阵是一种统计工具,用于描述数据集中各变量间线性关系的强弱和方向。通常计算的是皮尔逊相关系数(Pearson’s correlation coefficient),其值范围为[-1, 1],值越接近±1,表示变量间的线性关系越强;正值表示正相关,负值表示负相关;值接近0表示无明显线性关系。


热力图是一种数据可视化手段,以颜色深浅表示数据值大小,常用于二维数组的可视化。在展示相关性矩阵时,热力图的行、列对应数据集中的变量,单元格颜色代表相应变量间的相关系数,颜色越暖(或越冷),相关性越强(或越弱)。

Seaborn库与heatmap函数

Seaborn是基于matplotlib的高级统计图形库,提供了便捷、美观的绘图接口。其中,heatmap函数专门用于绘制热力图,特别适用于展示相关性矩阵。

绘制相关性矩阵热力图的基本步骤与代码示例

以经典的鸢尾花数据集为例,展示如何使用Seaborn绘制相关性矩阵热力图:

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

# 加载鸢尾花数据集
iris = sns.load_dataset("iris")

# 计算相关性矩阵
corr_matrix = iris.corr()

# 绘制热力图
sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", linewidths=.5)

plt.title("Iris Dataset Correlation Matrix Heatmap")
plt.show()
  • iris.corr():使用Pandas的corr方法计算相关性矩阵。
  • sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", linewidths=.5):绘制热力图,参数说明如下:corr_matrix:待绘制的相关性矩阵。annot=True:在单元格中标注出具体的相关系数数值。cmap="coolwarm":选择冷暖色系配色方案,正相关为暖色,负相关为冷色。linewidths=.5:设置网格线宽度。

热力图的高级定制与解释

Seaborn的heatmap函数提供了丰富的自定义选项,可根据实际需求调整热力图的样式和细节:

# 高级定制热力图
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="vlag",
            center=0, square=True, linewidths=.5,
            annot_kws={"size": 10}, cbar_kws={"shrink": .9})

plt.title("Customized Correlation Matrix Heatmap")
plt.show()
  • fmt=".2f":设定相关系数数值标注的格式,保留两位小数。
  • cmap="vlag":选择“vlag”配色方案,强调正负相关性差异。
  • center=0:设置颜色映射的中心值,确保正负相关性颜色对称。
  • square=True:使行和列的单元格保持正方形,便于视觉比较。
  • annot_kws={"size": 10}:设置相关系数标注字体大小。
  • cbar_kws={"shrink": .9}:调整颜色条的收缩比例,使其占用空间减小。

热力图在Python Web应用中的实践

在Web环境中,热力图同样可以嵌入到网页中,为用户提供交互式的相关性分析体验。借助Plotly库和Flask框架,可以轻松实现动态热力图的生成与展示:

from flask import Flask, render_template, jsonify
import plotly.graph_objs as go
import pandas as pd

app = Flask(__name__)

@app.route('/correlation_heatmap')
def correlation_heatmap():
    # 假设已从数据库获取并处理好数据
    df = pd.read_csv('iris.csv')

    corr_matrix = df.corr()
    heatmap_data = [
        go.Heatmap(
            z=corr_matrix.values,
            x=corr_matrix.columns,
            y=corr_matrix.index,
            colorscale="Viridis"
        )
    ]

    layout = go.Layout(
        title="Interactive Correlation Matrix Heatmap",
        xaxis_title="Variables",
        yaxis_title="Variables",
        width=800,
        height=800,
        margin=dict(l=100, r=100, b=100, t=100),
        annotations=[
            dict(text="Correlation Coefficient",
                 showarrow=False,
                 xref="paper", yref="paper",
                 x=0.5, y=-0.1,
                 font=dict(size=14))
        ]
    )

    fig = go.Figure(data=heatmap_data, layout=layout)

    # 将图表转化为JSON响应
    return jsonify(fig.to_json())

# 在前端JavaScript中使用Plotly接收并渲染JSON数据
# 示例代码省略,参考Plotly官方文档

if __name__ == '__main__':
    app.run(debug=True)

实例分析与解读

在鸢尾花数据集中,热力图清晰地展示了各变量间的相关性:

  • 萼片长度、宽度与花瓣长度、宽度之间存在显著的正相关,这符合生物学上对鸢尾花形态特征的理解。
  • 同一类别的测量(如萼片长度与宽度,花瓣长度与宽度)之间相关性最强,表明这些属性在一定程度上共同决定了鸢尾花的某一特性。
  • 不同类别(萼片与花瓣)的测量间相关性较弱,但仍可看出一定的关联,说明尽管各自代表不同的植物结构,它们仍受到某些共享因素的影响。

热力图在数据分析流程中的作用

热力图在数据分析流程中扮演着重要角色:

  • 数据预处理:通过观察热力图,可以识别高度相关的特征(可能产生多重共线性),据此决定是否进行特征选择或降维。
  • 模型解释:在建立预测模型后,绘制模型系数或特征重要性的热力图,有助于理解模型内部机制,识别关键影响因素。
  • 假设检验:在进行假设检验前,热力图可快速揭示变量间潜在关系,指导研究者设计合理的假设。

结论与展望

Seaborn库的heatmap函数为Python Web开发者提供了强大且易用的相关性矩阵可视化工具。无论是在本地进行深度数据分析,还是在Web应用中提供交互式数据探索,热力图都能有效提升数据洞察力。

相关推荐

全网第一个讲清楚CPK如何计算的Step by stepExcel和Python同时实现

在网上搜索CPK的计算方法,几乎全是照搬教材的公式,在实际工作做作用不大,甚至误导人。比如这个又比如这个:CPK=min((X-LSL/3s),(USL-X/3s))还有这个,很规范的公式,也很清晰很...

[R语言] R语言快速入门教程(r语言基础操作)

本文主要是为了从零开始学习和理解R语言,简要介绍了该语言的最重要部分,以快速入门。主要参考文章:R-TutorialR语言程序的编写需要安装R或RStudio,通常是在RStudio中键入代码。但是R...

Python第123题:计算直角三角形底边斜边【PythonTip题库300题】

1、编程试题:编写一个程序,找出已知面积和高的直角三角形的另外两边(底边及斜边)。定义函数find_missing_sides(),有两个参数:area(面积)和height(高)。在函数内,计算另外...

Tensor:Pytorch神经网络界的Numpy

TensorTensor,它可以是0维、一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便。但它们也不相同,最大的区别就是Numpy...

python多进程编程(python多进程进程池)

forkwindows中是没有fork函数的,一开始直接在Windows中测试,直接报错importosimporttimeret=os.fork()ifret==0:...

原来Python的协程有2种实现方式(python协程模型)

什么是协程在Python中,协程(Coroutine)是一种轻量级的并发编程方式,可以通过协作式多任务来实现高效的并发执行。协程是一种特殊的生成器函数,通过使用yield关键字来挂起函数的执行...

ob混淆加密解密,新版大众点评加密解密

1目标:新版大众点评接口参数_token加密解密数据获取:所有教育培训机构联系方式获取难点:objs混淆2打开大众点评网站,点击教育全部,打开页面,切换到mobile模式,才能找到接口。打开开发者工具...

python并发编程-同步锁(python并发和并行)

需要注意的点:1.线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻...

10分钟学会Python基础知识(python基础讲解)

看完本文大概需要8分钟,看完后,仔细看下代码,认真回一下,函数基本知识就OK了。最好还是把代码敲一下。一、函数基础简单地说,一个函数就是一组Python语句的组合,它们可以在程序中运行一次或多次运行。...

Python最常见的170道面试题全解析答案(二)

60.请写一个Python逻辑,计算一个文件中的大写字母数量答:withopen(‘A.txt’)asfs:count=0foriinfs.read():ifi.isupper...

Python 如何通过 threading 模块实现多线程。

先熟悉下相关概念多线程是并发编程的一种方式,多线程在CPU密集型任务中无法充分利用多核性能,但在I/O操作(如文件读写、网络请求)等待期间,线程会释放GIL,此时其他线程可以运行。GIL是P...

Python的设计模式单例模式(python 单例)

单例模式,简单的说就是确保只有一个实例,我们知道,通常情况下类其实可以有很多实例,我们这么来保证唯一呢,全局访问。如配置管理、数据库连接池、日志处理器等。classSingleton: ...

更安全的加密工具:bcrypt(bcrypt加密在线)

作为程序员在开发工作中经常会使用加密算法,比如,密码、敏感数据等。初学者经常使用md5等方式对数据进行加密,但是作为严谨开发的程序员,需要掌握一些相对安全的加密方式,今天给大家介绍下我我在工作中使用到...

一篇文章搞懂Python协程(python协程用法)

前引之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把cpu的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线...

Python开发必会的5个线程安全技巧

点赞、收藏、加关注,下次找我不迷路一、啥是线程安全?假设你开了一家包子铺,店里有个公共的蒸笼,里面放着刚蒸好的包子。现在有三个顾客同时来拿包子,要是每个人都随便伸手去拿,会不会出现混乱?比如第一个顾...

取消回复欢迎 发表评论: