百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

python下又一款漂亮超炫酷的动态数据可视化工具——可动态交互

off999 2024-12-10 19:21 12 浏览 0 评论

python下有很多漂亮的数据可视化库,例如 Matplotlib、Seaborn、Bokeh、Plotly、Pyecharts等等,我们直接使用这些第三方库来进行漂亮的数据可视化操作。虽然这些库都可以很好的展示数据,但是在实现动态可交互上,很多库并不支持动态交互。

我们前期介绍过Pyecharts,不仅可以进行数据的可视化操作,且可以支持动态交互,且安装简单,只需要在python环境下,使用pip进行安装就可以使用。本期我们介绍另外一款动态可交互数据可视化库D3blocks。

D3Blocks 是一个用于创建独立的交互式图表的框架。除了 Python 之外,无需安装其他任何东西即可创建 D3Blocks 图表,创建图表后,只需要一个浏览器即可绘制图表,且可以分享给其他人,无需安装python与D3Blocks即可运行。

D3 是 Data-Driven Documents 的缩写,它是一个 JavaScript 库,用于在 Web 浏览器中生成动态、交互式数据可视化。它利用可扩展矢量图形 (SVG)、HTML5 和级联样式表 (CSS) 标准。D3 也称为 D3.js 或 d3js。

D3 的主要优点是它符合 Web 标准,因此除了浏览器之外您不需要任何其他技术来绘制图表。D3Blocks 创建的每个图表都完全封装到单个 HTML 文件中,这使得在网站上共享或发布变得非常容易。D3Blocks 的安装也很简单,只需要使用如下2行命令的其中一个即可安装完成,安装完成后,我们就可以使用D3Blocks 了

pip install git+https://github.com/d3blocks/d3blocks
pip install d3blocks

目前D3Blocks 支持的动态交互blocks如下

Timeseries
Chord
D3graph
Elasticgraph
Sankey
Heatmap
MovingBubbles
Imageslider
Scatter
Violin
Particles
Treemap
Tree
circlepacking

每个库,官方都提供了实例代码,方便用户可以直接来使用。

from d3blocks import D3Blocks
d3 = D3Blocks()
df = d3.import_example('climate')
d3.timeseries(df, datetime='date', dt_format='%Y-%m-%d %H:%M:%S', fontsize=10, figsize=[850, 500])

以上代码我们就建立了一个Timeseries blocks,根据名字我们知道此blocks是一个时间序列,从可视化的图表上,我们可以把鼠标放置到任意一个位置来进行查看这个时间的数据,以及我们可以使用框选的方式,选择局部区域,方便查看细节数据。

from d3blocks import D3Blocks
d3 = D3Blocks()
df = d3.import_example('energy')
d3.chord(df)

第二个是chord block图,当然我们也可以使用自己的数据进行可视化。chord block表示多个实体或节点之间的流或连接。 每个实体都由圆形布局外部的一个片段表示。 然后,在每个实体之间绘制弧线。 弧线的大小与流量的大小成正比。

from d3blocks import D3Blocks
d3 = D3Blocks()
df = d3.import_example('energy') 
d3.d3graph(df, filepath='d3graph.html')
d3.d3graph(df, scaler='minmax')
d3.D3graph.set_node_properties(color=None)
d3.D3graph.node_properties['Solar']['size']=30
d3.D3graph.node_properties['Solar']['color']='#FF0000'
d3.D3graph.node_properties['Solar']['edge_color']='#000000'
d3.D3graph.node_properties['Solar']['edge_size']=5
d3.D3graph.show()
d3.D3graph.set_edge_properties(directed=True, marker_end='arrow')
d3.D3graph.show()
d3.D3graph.node_properties
d3.D3graph.edge_properties
d3.D3graph.show()

D3graph是一个动态可交互的关系网图,可以设置每个节点的颜色,以及大小,甚至可以在关系网上添加箭头。

from d3blocks import D3Blocks
d3 = D3Blocks()
df = d3.import_example('energy') # 'stormofswords'
d3.elasticgraph(df, filepath='Elasticgraph.html')
d3.Elasticgraph.show()
d3.Elasticgraph.D3graph.show()
d3.Elasticgraph.show()
d3.Elasticgraph.D3graph.show()
d3.Elasticgraph.D3graph.node_properties
d3.Elasticgraph.D3graph.edge_properties

Elasticgraph block类似电子原子核的结构,来关联每个数据,且数据可以进行细节参考,双击每个节点,就会展开各个数据。

from d3blocks import D3Blocks
d3 = D3Blocks()
df = d3.import_example('energy')
d3.sankey(df)

Sankey 桑基图是一种数据流向可视化block,用于描述从一组数据到另一组数据的流动。 在这种情况下,节点表示为矩形框,流或箭头。 箭头的宽度与流量成正比。

from d3blocks import D3Blocks
d3 = D3Blocks()
df = d3.import_example('stormofswords')  # 'energy'
d3.heatmap(df)

Heatmap 热力图是一个体现数据关系的图,我们可以从图上看出,此图跟我们讲解transformer模型时的注意力机制的图类似,体现了注意力的关系,颜色越深的地方,其代表2个数据关系越大。

from d3blocks import D3Blocks
d3 = D3Blocks()
df = d3.import_example('random_time', n=10000, c=300, date_start="1-1-2000 00:10:05", date_stop="1-1-2000 23:59:59")
d3.movingbubbles(df, speed={"slow": 1000, "medium": 200, "fast": 10}, filepath='movingbubbles.html')

MovingBubbles图体现了数据的移动关系,我们可以使用此图来表示动物的迁移等。

from d3blocks import D3Blocks
d3 = D3Blocks()
img_before = cv2.imread(img_before, -1)
img_after = cv2.imread(img_after, -1)
d3.imageslider(img_before, img_after)
d3.imageslider(img_before, img_after, showfig=True, scale=True, colorscale=2, figsize=[400, 400])

Imageslider体现了前后2张图片的对比功能,我们可以直接在HTML上面来查看2张图片的前后变化。

当然D3blocks 还包含其他的可视化block,包含scatter,violin,treemap,tree,circlepacking等等。

from d3blocks import D3Blocks
d3 = D3Blocks()
d3.particles('D3blocks')
d3.particles('D3Blocks',
                 filepath='D3Blocks.html',
                 collision=0.05,
                 spacing=7,
                 figsize=[750, 150],
                 fontsize=130,
                 cmap='Turbo',
                 color_background='#ffffff')

最后这个Particles还是挺有意思的,我们可以用来宣传自己的logo,来放到自己的产品主页,或者做出视频来宣传。

更多动态可视化的代码制作,可以参考d3blocks库的代码。

相关推荐

独家 | 5 个Python高级特性让你在不知不觉中成为Python高手

你已经使用Python编程了一段时间,编写脚本并解决各种问题。是你的水平出色吗?你可能只是在不知不觉中利用了Python的高级特性。从闭包(closure)到上下文管理器(contextmana...

Python装饰器

Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...

中高阶Python常规用法--上下文管理器

Python以简单性和通用性著称,是一种深受全球开发人员喜爱的编程语言。它提供了大量的特性和功能,使编码成为一种愉快的体验。在这些功能中,一个经常被新手忽视的强大工具是上下文管理器。上下文管理器是高...

Python小案例67- 装饰器

Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...

python常用的语法糖

概念Python的语法糖(SyntacticSugar)是指那些让代码更简洁、更易读的语法特性,它们本质上并不会增加新功能,但能让开发者更高效地编写代码。推导式写法推导式是Python最经典的...

python - 常用的装饰器 decorator 有哪些?

python编程中使用装饰器(decorator)工具,可以使代码更简洁清晰,提高代码的重用性,还可以为代码维护提供方便。对于python初学者来说,根据装饰器(decorator)的字面意思并不...

python数据缓存怎么搞 ?推荐一个三方包供你参考,非常简单好用。

1.数据缓存说明数据缓存可以说也是项目开发中比不可少的一个工具,像我们测试的系统中,你都会见到像Redis一样的数据缓存库。使用缓存数据库的好处不言而喻,那就是效率高,简单数据直接放在缓存中...

用于时间序列数据的Graphite监视工具

结合第三方工具,Graphite为IT性能监控提供了许多好处。本文介绍其核心组件,包括Carbon、Whisper以及安装的基本准则。Graphite监视工具可实时或按需,大规模地绘制来自多个来源的时...

Python3+pygame实现的坦克大战

一、显示效果二、代码1.说明几乎所有pygame游戏,基本都遵循一定的开发流程,大体如下:初始化pygame创建窗口while循环检测以及处理事件(鼠标点击、按键等)更新UI界面2.代码创建一个m...

Python之鸭子类型:一次搞懂with与上下文装饰器

引言在鸭子类型的理念的基础之上,从关注类型,转变到关注特性和行为。结合Python中的魔法函数的体系,我们可以将自定义的类型,像内置类型一样被使用。今天这篇文章中,接着该话题,继续聊一下with语法块...

Python必会的50个代码操作

学习Python时,掌握一些常用的程序操作非常重要。以下是50个Python必会的程序操作,主要包括基础语法、数据结构、函数和文件操作等。1.HelloWorldprint("Hello,...

一文掌握Python 中的同步和异步

同步代码(Sync)同步就像在一个流水线上工作,每个任务都等待前一个任务完成。示例:机器A切割钢板→完成后,机器B钻孔→完成后,机器C上色。在Python中,同步代码看起来像这样:im...

python 标注模块timeit: 测试函数的运行时间

在Python中,可以使用内置的timeit模块来测试函数的运行时间。timeit模块提供了一个简单的接口来测量小段代码的执行时间。以下是使用timeit测试函数运行时间的一般步骤:导入...

Python带你找回童年的万花尺

还记得小时候的万花尺吧?这么画:一点也不费脑筋,就可以出来这么多丰富多彩的复杂几何图形。具体而言,可以用万花尺玩具(如图2-1所示)来绘制数学曲线。这种玩具由两个不同尺寸的塑料齿轮组成,一大一小。小的...

Python 时间模块深度解析:从基础到高级的全面指南

直接上干货一、时间模块核心类介绍序号类名说明1datetime.datetime表示一个具体的日期和时间,结合了日期和时间的信息。2datetime.date表示一个具体的日期。3datetime.t...

取消回复欢迎 发表评论: