百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

【Python时序预测系列】基于LSTM实现多输入多输出单步预测

off999 2024-12-18 16:18 26 浏览 0 评论

这是我的第312篇原创文章。

一、引言

单站点多变量输入多变量输出单步预测问题----基于LSTM实现。

多输入就是输入多个特征变量

多输出就是同时预测出多个标签的结果

单步就是利用过去N天预测未来1天的结果

二、实现过程

2.1 读取数据集

df=pd.read_csv("data.csv", parse_dates=["Date"], index_col=[0])
print(df.shape)
print(df.head())
fea_num = len(df.columns)

df:

2.2 划分数据集

# 拆分数据集为训练集和测试集
test_split=round(len(df)*0.20)
df_for_training=df[:-test_split]
df_for_testing=df[-test_split:]


# 绘制训练集和测试集的折线图
plt.figure(figsize=(10, 6))
plt.plot(train_data, label='Training Data')
plt.plot(test_data, label='Testing Data')
plt.xlabel('Year')
plt.ylabel('Passenger Count')
plt.title('International Airline Passengers - Training and Testing Data')
plt.legend()
plt.show()

共5203条数据,8:2划分:训练集4162,测试集1041。

训练集和测试集:

2.3 归一化

# 将数据归一化到 0~1 范围(整体一起做归一化)
scaler = MinMaxScaler(feature_range=(0,1))
df_for_training_scaled = scaler.fit_transform(df_for_training)
df_for_testing_scaled=scaler.transform(df_for_testing)

2.4 构造LSTM数据集(时序-->监督学习)

def createXY(data, win_size, target_feature_idxs):
    pass


win_size = 12 # 时间窗口
target_feature_idxs = [0, 1, 2, 3, 4] # 指定待预测特征列索引
trainX, trainY = createXY(df_for_training_scaled, win_size, target_feature_idxs)
testX, testY = createXY(df_for_testing_scaled, win_size, target_feature_idxs)
print("训练集形状:", trainX.shape, trainY.shape)
print("测试集形状:", testX.shape, testY.shape)


# 将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数)
trainX = np.reshape(trainX, (trainX.shape[0], win_size, fea_num))
testX = np.reshape(testX, (testX.shape[0], win_size, fea_num))


print("trainX Shape-- ",trainX.shape)
print("trainY Shape-- ",trainY.shape)
print("testX Shape-- ",testX.shape)
print("testY Shape-- ",testY.shape)

滑动窗口设置为12:

取出df_for_training_scaled第【1-12】行第【1-5】列的12条数据作为trainX[0],取出df_for_training_scaled第【13】行第【1-5】列的1条数据作为trainY[0];依此类推。最终构造出的训练集数量(4150)比划分时候的训练集数量(4162)少一个滑动窗口(12)。

trainX是一个(4150,12,5)的三维数组,三个维度分布表示(样本数量,步长,特征数),每一个样本比如trainX[0]是一个(12,5)二维数组表示(步长,特征数),这也是LSTM模型每一步的输入。

trainY是一个(4150,5)的二维数组,二个维度分布表示(样本数量,标签数),每一个样本比如trainY[0]是一个(5,)一维数组表示(标签数,),这也是LSTM模型每一步的输出。

2.5 建立模拟合模型

# 输入维度
input_shape = Input(shape=(trainX.shape[1], trainX.shape[2]))
# LSTM层
lstm_layer = LSTM(128, activation='relu')(input_shape)
# 全连接层
dense_1 = Dense(64, activation='relu')(lstm_layer)
dense_2 = Dense(32, activation='relu')(dense_1)
# 输出层
output_1 = Dense(1, name='Open')(dense_2)
output_2 = Dense(1, name='High')(dense_2)
output_3 = Dense(1, name='Low')(dense_2)
output_4 = Dense(1, name='Close')(dense_2)
output_5 = Dense(1, name='AdjClose')(dense_2)
model = Model(inputs = input_shape, outputs = [output_1, output_2, output_3, output_4, output_5])
model.compile(loss='mse', optimizer='adam')
model.summary()

这是一个多输入多输出的 LSTM 模型,接受包含12个时间步长和5个特征的输入序列,在经过一层128个神经元的 LSTM 层和5个全连接层后,输出5个单独的预测结果,分别是 Open、High、 Low、Close和 AdjClose。

进行训练,这里[trainY[:,i] for i in range(trainY.shape[1])]把原来的trainY做了转置,是一个(5,4150)的二维数组,分别表示(标签数,样本数)。相当于建立了5个通道,每个通道是(4150,)的一维数组。

history = model.fit(trainX, [trainY[:,i] for i in range(trainY.shape[1])], epochs=20, batch_size=32)

2.6 进行预测

进行预测,上面我们分析过模型每一步的输入是一个(12,5)二维数组表示(步长,特征数),模型每一步的输出是是一个(5,)一维数组表示(标签数,)

prediction_test = model.predict(testX)

如果直接model.predict(testX),testX的形状是(1029,12,5),是一个批量预测,输出prediction_test是一个(5,1029,1)的三维数组,prediction_test[0]就是第一个标签的预测结果,prediction_test[1]就是第二个标签的预测结果...多输出就是同时预测出多个标签的结果

2.7 预测效果展示

分析一下第一个变量open的效果,i=0:

prediction_train = model.predict(trainX)
prediction_train0=model.predict(trainX)[i]
prediction_train_copies_array = ...
pred_train=...
original_train_copies_array = trainY
original_train=...
print("train Pred Values-- ", pred_train)
print("\ntrain Original Values-- ", original_train)
plt.plot(df_for_training.index[win_size:,], original_train, color = 'red', label = '真实值')
plt.plot(df_for_training.index[win_size:,], pred_train, color = 'blue', label = '预测值')
plt.title('Stock Price Prediction')
plt.xlabel('Time')
plt.xticks(rotation=45)
plt.ylabel('Stock Price')
plt.legend()
plt.show()

训练集真实值与预测值:

prediction_test = model.predict(testX)
prediction_test0=model.predict(testX)[i]
prediction_test_copies_array = ...
pred_test=...
original_test_copies_array = testY
original_test=...
print("\ntest Original Values-- ", original_test)
plt.plot(df_for_testing.index[win_size:,], original_test, color = 'red', label = '真实值')
plt.plot(df_for_testing.index[win_size:,], pred_test, color = 'blue', label = '预测值')
plt.title('Stock Price Prediction')
plt.xlabel('Time')
plt.xticks(rotation=45)
plt.ylabel('Stock Price')
plt.legend()
plt.show()

测试集真实值与预测值:

2.8 评估指标

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

「链接」

相关推荐

让 Python 代码飙升330倍:从入门到精通的四种性能优化实践

花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...

7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制

“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...

Python3.14:终于摆脱了GIL的限制

前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...

Python Web开发实战:3小时从零搭建个人博客

一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...

图解Python编程:从入门到精通系列教程(附全套速查表)

引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...

Python 并发编程实战:从基础到实战应用

并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...

吴恩达亲自授课,适合初学者的Python编程课程上线

吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...

Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件

在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...

Python turtle模块编程实践教程

一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...

Python 中的asyncio 编程入门示例-1

Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...

30天学会Python,开启编程新世界

在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...

Python基础知识(IO编程)

1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...

Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!

Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...

一文带你了解Python Socket 编程

大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...

Python-面向对象编程入门

面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...

取消回复欢迎 发表评论: