【Python时序预测系列】LSTM实现时序数据多输入多输出多步预测
off999 2024-12-18 16:18 32 浏览 0 评论
这是我的第325篇原创文章。
一、引言
单站点多变量输入多变量输出多步预测问题----基于LSTM实现。
多输入就是输入多个特征变量
多输出就是同时预测出多个标签的结果
多步就是利用过去N天预测未来M天的结果
二、实现过程
2.1 读取数据集
df=pd.read_csv("data.csv", parse_dates=["Date"], index_col=[0])
print(df.shape)
print(df.head())
fea_num = len(df.columns)
df:
2.2 划分数据集
# 拆分数据集为训练集和测试集
test_split=round(len(df)*0.20)
df_for_training=df[:-test_split]
df_for_testing=df[-test_split:]
# 绘制训练集和测试集的折线图
plt.figure(figsize=(10, 6))
plt.plot(train_data, label='Training Data')
plt.plot(test_data, label='Testing Data')
plt.xlabel('Year')
plt.ylabel('Passenger Count')
plt.title('International Airline Passengers - Training and Testing Data')
plt.legend()
plt.show()
共5203条数据,8:2划分:训练集4162,测试集1041。
训练集和测试集:
2.3 归一化
# 将数据归一化到 0~1 范围(整体一起做归一化)
scaler = MinMaxScaler(feature_range=(0,1))
df_for_training_scaled = scaler.fit_transform(df_for_training)
df_for_testing_scaled=scaler.transform(df_for_testing)
2.4 构造LSTM数据集(时序-->监督学习)
def split_series(series, n_past, n_future):
pass
# 假设给定过去 10 天的观察结果,我们需要预测接下来的 3 天观察结果
n_past = 10
n_future = 3
n_features = fea_num
# # 将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数)
X_train, y_train = split_series(df_for_training_scaled,n_past, n_future)
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1],n_features))
y_train = y_train.reshape((y_train.shape[0], y_train.shape[1], n_features))
X_test, y_test = split_series(df_for_testing_scaled,n_past, n_future)
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1],n_features))
y_test = y_test.reshape((y_test.shape[0], y_test.shape[1], n_features))
print("trainX Shape-- ",X_train.shape)
print("trainY Shape-- ",y_train.shape)
print("testX Shape-- ",X_test.shape)
print("testY Shape-- ",y_test.shape)
假设给定过去 10 天的观察结果,预测接下来的 3 天观察结果:
取出df_for_training_scaled第【1-10】行第【1-5】列的10条数据作为X_train[0],取出df_for_training_scaled第【11-13】行第【1-5】列的3条数据作为y_train[0];
取出df_for_training_scaled第【2-11】行第【1-5】列的10条数据作为X_train[1],取出df_for_training_scaled第【12-14】行第【1-5】列的3条数据作为y_train[1];
取出df_for_training_scaled第【4150-4159】行第【1-5】列的10条数据作为X_train[4149],取出df_for_training_scaled第【4160-4162】行第【1-5】列的3条数据作为y_train[4149];
依此类推。最终构造出的训练集数量(4150)比划分时候的训练集数量(4162)少一个12(n_past+n_future-1)。
X_train是一个(4150,10,5)的三维数组,三个维度分布表示(样本数量,步长,特征数),每一个样本比如X_train[0]是一个(10,5)二维数组表示(步长,特征数),这也是seq2seq模型每一步的输入。
y_train是一个(4150,3,5)的三维数组,三个维度分布表示(样本数量,步长,标签数),每一个样本比如y_train[0]是一个(3,5)二维数组表示(步长,标签数),这也是seq2seq模型每一步的输出。
2.5 建立模拟合模型
encoder_inputs = Input(shape=(n_past, n_features))
encoder_l1 = LSTM(100, return_state=True)
encoder_outputs1 = encoder_l1(encoder_inputs)
encoder_states1 = encoder_outputs1[1:]
decoder_inputs = RepeatVector(...)(...)
decoder_l1 = LSTM(100, return_sequences=True)(...)
decoder_outputs1 = TimeDistributed(Dense(...))(...)
model_e1d1 = Model(encoder_inputs,decoder_outputs1)
model_e1d1.summary()
这是一个多输入多输出的 seq2seq 模型:具有一个编码器层和一个解码器层的序列到序列模型。
进行训练:
reduce_lr = tf.keras.callbacks.LearningRateScheduler(lambda x: 1e-3 * 0.90 ** x)
model_e1d1.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.Huber())
history_e1d1=model_e1d1.fit(X_train,y_train,epochs=25,validation_data=(X_test,y_test),batch_size=32,verbose=0,callbacks=[reduce_lr])
2.6 进行预测
进行预测,上面我们分析过模型每一步的输入是一个(10,5)二维数组表示(步长,特征数),模型每一步的输出是是一个(3,5)二维数组表示(步长,标签数)
prediction_test = model.predict(testX)
如果直接model.predict(testX),testX的形状是(1029,10,5),是一个批量预测,输出prediction_test是一个(1029,3,5)的三维数组,prediction_test[0]就是第一个样本未来3天5个标签的预测结果,prediction_test[1]就是第二个样本未来3天5个标签的预测结果...
看一下第一个测试集样本的预测情况:
pred_e1d1_0 = pred_e1d1[0]
pred_e1d1_0_T = scaler.inverse_transform(pred_e1d1_0)
y_test_0 = y_test[0]
y_test_0_T = scaler.inverse_transform(y_test_0)
预测值(未来3天5个变量的预测):
真实值(未来3天5个变量的真值):
作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。
原文链接:
相关推荐
- 让 Python 代码飙升330倍:从入门到精通的四种性能优化实践
-
花下猫语:性能优化是每个程序员的必修课,但你是否想过,除了更换算法,还有哪些“大招”?这篇文章堪称典范,它将一个普通的函数,通过四套组合拳,硬生生把性能提升了330倍!作者不仅展示了“术”,更传授...
- 7 段不到 50 行的 Python 脚本,解决 7 个真实麻烦:代码、场景与可复制
-
“本文整理自开发者AbdurRahman在Stackademic的真实记录,所有代码均经过最小化删减,确保在50行内即可运行。每段脚本都对应一个日常场景,拿来即用,无需额外依赖。一、在朋...
- Python3.14:终于摆脱了GIL的限制
-
前言Python中最遭人诟病的设计之一就是GIL。GIL(全局解释器锁)是CPython的一个互斥锁,确保任何时刻只有一个线程可以执行Python字节码,这样可以避免多个线程同时操作内部数据结...
- Python Web开发实战:3小时从零搭建个人博客
-
一、为什么选Python做Web开发?Python在Web领域的优势很突出:o开发快:Django、Flask这些框架把常用功能都封装好了,不用重复写代码,能快速把想法变成能用的产品o需求多:行业...
- 图解Python编程:从入门到精通系列教程(附全套速查表)
-
引言本系列教程展开讲解Python编程语言,Python是一门开源免费、通用型的脚本编程语言,它上手简单,功能强大,它也是互联网最热门的编程语言之一。Python生态丰富,库(模块)极其丰富,这使...
- Python 并发编程实战:从基础到实战应用
-
并发编程是提升Python程序效率的关键技能,尤其在处理多任务场景时作用显著。本文将系统介绍Python中主流的并发实现方式,帮助你根据场景选择最优方案。一、多线程编程(threading)核...
- 吴恩达亲自授课,适合初学者的Python编程课程上线
-
吴恩达教授开新课了,还是亲自授课!今天,人工智能著名学者、斯坦福大学教授吴恩达在社交平台X上发帖介绍了一门新课程——AIPythonforBeginners,旨在从头开始讲授Python...
- Python GUI 编程:tkinter 初学者入门指南——Ttk 小部件
-
在本文中,将介绍Tkinter.ttk主题小部件,是常规Tkinter小部件的升级版本。Tkinter有两种小部件:经典小部件、主题小部件。Tkinter于1991年推出了经典小部件,...
- Python turtle模块编程实践教程
-
一、模块概述与核心概念1.1turtle模块简介定义:turtle是Python标准库中的2D绘图模块,基于Logo语言的海龟绘图理念实现。核心原理:坐标系系统:原点(0,0)位于画布中心X轴:向右...
- Python 中的asyncio 编程入门示例-1
-
Python的asyncio库是用于编写并发代码的,它使用async/await语法。它为编写异步程序提供了基础,通过非阻塞调用高效处理I/O密集型操作,适用于涉及网络连接、文件I/O...
- 30天学会Python,开启编程新世界
-
在当今这个数字化无处不在的时代,Python凭借其精炼的语法架构、卓越的性能以及多元化的应用领域,稳坐编程语言排行榜的前列。无论是投身于数据分析、人工智能的探索,还是Web开发的构建,亦或是自动化办公...
- Python基础知识(IO编程)
-
1.文件读写读写文件是Python语言最常见的IO操作。通过数据盘读写文件的功能都是由操作系统提供的,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个...
- Python零基础到精通,这8个入门技巧让你少走弯路,7天速通编程!
-
Python学习就像玩积木,从最基础的块开始,一步步搭建出复杂的作品。我记得刚开始学Python时也是一头雾水,走了不少弯路。现在回头看,其实掌握几个核心概念,就能快速入门这门编程语言。来聊聊怎么用最...
- 一文带你了解Python Socket 编程
-
大家好,我是皮皮。前言Socket又称为套接字,它是所有网络通信的基础。网络通信其实就是进程间的通信,Socket主要是使用IP地址,协议,端口号来标识一个进程。端口号的范围为0~65535(用户端口...
- Python-面向对象编程入门
-
面向对象编程是一种非常流行的编程范式(programmingparadigm),所谓编程范式就是程序设计的方法论,简单的说就是程序员对程序的认知和理解以及他们编写代码的方式。类和对象面向对象编程:把...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)