百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

一个超方便使用SQL的Python神器 python设计超市管理系统

off999 2024-12-19 15:40 12 浏览 0 评论

其实一开始用的是pymysql,但是发现维护比较麻烦,还存在代码注入的风险,所以就干脆直接用ORM框架。

ORM即Object Relational Mapper,可以简单理解为数据库表和Python类之间的映射,通过操作Python类,可以间接操作数据库。

Python的ORM框架比较出名的是SQLAlchemyPeewee,这里不做比较,只是单纯讲解个人对SQLAlchemy的一些使用,希望能给各位朋友带来帮助。

  • sqlalchemy版本: 1.3.15
  • pymysql版本: 0.9.3
  • mysql版本: 5.7

初始化工作

一般使用ORM框架,都会有一些初始化工作,比如数据库连接,定义基础映射等。

以MySQL为例,创建数据库连接只需要传入DSN字符串即可。其中echo表示是否输出对应的sql语句,对调试比较有帮助。

from sqlalchemy import create_engine

engine = create_engine('mysql+pymysql://$user:$password@$host:$port/$db?charset=utf8mb4', echo=True)

个人设计

对于我个人而言,引进ORM框架时,我的项目会参考MVC模式做以下设计。其中model存储的是一些数据库模型,即数据库表映射的Python类;model_op存储的是每个模型对应的操作,即增删查改;调用方(如main.py)执行数据库操作时,只需要调用model_op层,并不用关心model层,从而实现解耦。

├── main.py
├── model
│   ├── __init__.py
│   ├── base_model.py
│   ├── ddl.sql
│   └── py_orm_model.py
└── model_op
    ├── __init__.py
    └── py_orm_model_op.py

映射声明(Model介绍)

举个栗子,如果我们有这样一张测试表

create table py_orm (
    `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '唯一id',
    `name` varchar(255) NOT NULL DEFAULT '' COMMENT '名称',
    `attr` JSON NOT NULL COMMENT '属性',
    `ct` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
    `ut` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON update CURRENT_TIMESTAMP COMMENT '更新时间',
    PRIMARY KEY(`id`)
)ENGINE=InnoDB COMMENT '测试表';

在ORM框架中,映射的结果就是下文这个Python类

# py_orm_model.py
from .base_model import Base
from sqlalchemy import Column, Integer, String, TIMESTAMP, text, JSON


class PyOrmModel(Base):
    __tablename__ = 'py_orm'

    id = Column(Integer, autoincrement=True, 
                primary_key=True, comment='唯一id')
    name = Column(String(255), nullable=False, 
                  default='', comment='名称')
    attr = Column(JSON, nullable=False, comment='属性')
    ct = Column(TIMESTAMP, nullable=False, server_default=text('CURRENT_TIMESTAMP'), comment='创建时间')
    ut = Column(TIMESTAMP, nullable=False, 
                server_default=text('CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP'),
                comment='更新时间')

首先

我们可以看到PyOrmModel继承了Base类,该类是sqlalchemy提供的一个基类,会对我们声明的Python类做一些检查,我将其放在base_model中。

# base_model.py
# 一般base_model做的都是一些初始化的工作

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

engine = create_engine("mysql+pymysql://root:123456@127.0.0.1:33306/orm_test?charset=utf8mb4", echo=False)

其次

每个Python类都必须包含__tablename__属性,不然无法找到对应的表。

第三

关于数据表的创建有两种方式,第一种当然是手动在MySQL中创建,只要你的Python类定义没有问题,就可以正常操作;第二种是通过orm框架创建,比如下面

# main.py
# 注意这里的导入路径,Base创建表时会寻找继承它的子类,如果路径不对,则无法创建成功

from sqlachlemy_lab import Base, engine

if __name__ == '__main__':
    Base.metadata.create_all(engine)

创建效果:

...
2020-04-04 10:12:53,974 INFO sqlalchemy.engine.base.Engine 
CREATE TABLE py_orm (
    id INTEGER NOT NULL AUTO_INCREMENT, 
    name VARCHAR(255) NOT NULL DEFAULT '' COMMENT '名称', 
    attr JSON NOT NULL COMMENT '属性', 
    ct TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP, 
    ut TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, 
    PRIMARY KEY (id)
)

第四

关于字段属性

  • 1.primary_key和autoincrement比较好理解,就是MySQL的主键和递增属性。
  • 2.如果是int类型,不需要指定长度,而如果是varchar类型,则必须指定。
  • 3.nullable对应的就是MySQL中的NULLNOT NULL
  • 4.关于defaultserver_default: default代表的是ORM框架层面的默认值,即插入的时候如果该字段未赋值,则会使用我们定义的默认值;server_default代表的是数据库层面的默认值,即DDL语句中的default关键字。

Session介绍

在SQLAlchemy的文档中提到,数据库的增删查改是通过session来执行的。

from sqlalchemy.orm import sessionmaker
Session = sessionmaker(bind=engine)

session = Session()
orm = PyOrmModel(id=1, name='test', attr={})
session.add(orm)

session.commit()
session.close()

如上,我们可以看到,对于每一次操作,我们都需要对session进行获取,提交和释放。这样未免过于冗余和麻烦,所以我们一般会进行一层封装。

1.采用上下文管理器的方式

处理session的异常回滚和关闭,这部分与所参考的文章是几乎一致的。

# base_model.py
from contextlib import contextmanager
from sqlalchemy.orm import sessionmaker, scoped_session

def _get_session():
    """获取session"""
    return scoped_session(sessionmaker(bind=engine, expire_on_commit=False))()

# 在这里对session进行统一管理,包括获取,提交,回滚和关闭
@contextmanager
def db_session(commit=True):
    session = _get_session()
    try:
        yield session
        if commit:
            session.commit()
    except Exception as e:
        session.rollback()
        raise e
    finally:
        if session:
            session.close()

2.model和dict转换

在PyOrmModel中增加两个方法,用于model和dict之间的转换

class PyOrmModel(Base):
    ...

    @staticmethod
    def fields():
        return ['id', 'name', 'attr']

    @staticmethod
    def to_json(model):
        fields = PyOrmModel.fields()
        json_data = {}
        for field in fields:
            json_data[field] = model.__getattribute__(field)
        return json_data

    @staticmethod
    def from_json(data: dict):
        fields = PyOrmModel.fields()

        model = PyOrmModel()
        for field in fields:
            if field in data:
                model.__setattr__(field, data[field])
        return model

3.数据库操作的封装

与参考的文章不同,我是直接调用了session,从而使调用方不需要关注model层,减少耦合。

# py_orm_model_op.py
from sqlachlemy_lab.model import db_session
from sqlachlemy_lab.model import PyOrmModel


class PyOrmModelOp:
    def __init__(self):
        pass

    @staticmethod
    def save_data(data: dict):
        with db_session() as session:
            model = PyOrmModel.from_json(data)
            session.add(model)

    # 查询操作,不需要commit
    @staticmethod
    def query_data(pid: int):
        data_list = []
        with db_session(commit=False) as session:
            data = session.query(PyOrmModel).filter(PyOrmModel.id == pid)
            for d in data:
                data_list.append(PyOrmModel.to_json(d))

            return data_list

4.调用方

# main.py
from sqlachlemy_lab.model_op import PyOrmModelOp


if __name__ == '__main__':
    PyOrmModelOp.save_data({'id': 1, 'name': 'test', 'attr': {}})

相关推荐

独家 | 5 个Python高级特性让你在不知不觉中成为Python高手

你已经使用Python编程了一段时间,编写脚本并解决各种问题。是你的水平出色吗?你可能只是在不知不觉中利用了Python的高级特性。从闭包(closure)到上下文管理器(contextmana...

Python装饰器

Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...

中高阶Python常规用法--上下文管理器

Python以简单性和通用性著称,是一种深受全球开发人员喜爱的编程语言。它提供了大量的特性和功能,使编码成为一种愉快的体验。在这些功能中,一个经常被新手忽视的强大工具是上下文管理器。上下文管理器是高...

Python小案例67- 装饰器

Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...

python常用的语法糖

概念Python的语法糖(SyntacticSugar)是指那些让代码更简洁、更易读的语法特性,它们本质上并不会增加新功能,但能让开发者更高效地编写代码。推导式写法推导式是Python最经典的...

python - 常用的装饰器 decorator 有哪些?

python编程中使用装饰器(decorator)工具,可以使代码更简洁清晰,提高代码的重用性,还可以为代码维护提供方便。对于python初学者来说,根据装饰器(decorator)的字面意思并不...

python数据缓存怎么搞 ?推荐一个三方包供你参考,非常简单好用。

1.数据缓存说明数据缓存可以说也是项目开发中比不可少的一个工具,像我们测试的系统中,你都会见到像Redis一样的数据缓存库。使用缓存数据库的好处不言而喻,那就是效率高,简单数据直接放在缓存中...

用于时间序列数据的Graphite监视工具

结合第三方工具,Graphite为IT性能监控提供了许多好处。本文介绍其核心组件,包括Carbon、Whisper以及安装的基本准则。Graphite监视工具可实时或按需,大规模地绘制来自多个来源的时...

Python3+pygame实现的坦克大战

一、显示效果二、代码1.说明几乎所有pygame游戏,基本都遵循一定的开发流程,大体如下:初始化pygame创建窗口while循环检测以及处理事件(鼠标点击、按键等)更新UI界面2.代码创建一个m...

Python之鸭子类型:一次搞懂with与上下文装饰器

引言在鸭子类型的理念的基础之上,从关注类型,转变到关注特性和行为。结合Python中的魔法函数的体系,我们可以将自定义的类型,像内置类型一样被使用。今天这篇文章中,接着该话题,继续聊一下with语法块...

Python必会的50个代码操作

学习Python时,掌握一些常用的程序操作非常重要。以下是50个Python必会的程序操作,主要包括基础语法、数据结构、函数和文件操作等。1.HelloWorldprint("Hello,...

一文掌握Python 中的同步和异步

同步代码(Sync)同步就像在一个流水线上工作,每个任务都等待前一个任务完成。示例:机器A切割钢板→完成后,机器B钻孔→完成后,机器C上色。在Python中,同步代码看起来像这样:im...

python 标注模块timeit: 测试函数的运行时间

在Python中,可以使用内置的timeit模块来测试函数的运行时间。timeit模块提供了一个简单的接口来测量小段代码的执行时间。以下是使用timeit测试函数运行时间的一般步骤:导入...

Python带你找回童年的万花尺

还记得小时候的万花尺吧?这么画:一点也不费脑筋,就可以出来这么多丰富多彩的复杂几何图形。具体而言,可以用万花尺玩具(如图2-1所示)来绘制数学曲线。这种玩具由两个不同尺寸的塑料齿轮组成,一大一小。小的...

Python 时间模块深度解析:从基础到高级的全面指南

直接上干货一、时间模块核心类介绍序号类名说明1datetime.datetime表示一个具体的日期和时间,结合了日期和时间的信息。2datetime.date表示一个具体的日期。3datetime.t...

取消回复欢迎 发表评论: