百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

在Windows环境下,本地部署和启动开源项目Ragflow的源代码

off999 2025-03-28 20:16 16 浏览 0 评论

在当前AI领域中,基于检索增强生成(RAG)的应用备受关注,而开源项目RAGFlow因其灵活性和功能性成为了一个热门选择。不过,由于其快速的版本迭代,可能会存在一些Bug,并且在实际项目落地时通常需要根据具体需求对源码进行定制化修改。遗憾的是,RAGFlow官方尚未提供针对Windows开发环境的详细文档。因此,在本地部署过程中,我整理了一份详细的记录,希望能够为有类似需求的开发者提供参考。

一、RAGFlow Python 环境配置

确保您的Python版本符合以下要求:

  • Python 版本:>=3.10,<3.13

二、Poetry 下载与安装

使用 Poetry 来管理 Python 依赖。首先,通过 pip 安装 Poetry:

pip install poetry

验证安装是否成功:

poetry --version

三、安装 Python 依赖

  1. 以管理员身份启动 Anaconda Prompt
  2. 为了确保权限足够,建议以管理员身份启动 Anaconda Prompt。

2、切换到ragflow运行环境

(base) C:\Windows\System32>D:
(base) D:>conda activate ragflow
(ragflow) D:>cd D:\WorkSpace\ForAi\pythod\ragflow

3、在ragflow根目录下运行poetry安装依赖命令

# 安装所有默认依赖
poetry install

# 安装 full 组中的依赖
poetry install -E full

4、已知问题与后续处理

在安装过程中,pyicu 版本 ==2.14 未能成功安装。目前这一问题对解析文档和聊天功能没有影响,因此暂时未进行处理。后续将更新文档以记录具体的解决方法。

四、前端启动

1、前端web服务器nginx

默认在目录下提供的配置文件是linux的,需要改成windows

nginx.conf

# user 指令在 Windows 上不支持,注释掉或删除
# user  root;

worker_processes  auto;

# 修改日志路径为 Windows 路径
error_log  D:/dockerData/ragflow/nginx-1.21.1/logs/error.log notice;
pid        D:/dockerData/ragflow/nginx-1.21.1/logs/nginx.pid;

events {
    worker_connections  1024;
}

http {
    # 修改 mime.types 文件路径为 Windows 路径
    include       D:/dockerData/ragflow/nginx-1.21.1/conf/mime.types;
    default_type  application/octet-stream;

    log_format  main  '$remote_addr - $remote_user [$time_local] "$request" '
                      '$status $body_bytes_sent "$http_referer" '
                      '"$http_user_agent" "$http_x_forwarded_for"';

    # 修改访问日志路径为 Windows 路径
    access_log  D:/dockerData/ragflow/nginx-1.21.1/logs/access.log  main;

    sendfile        on;
    #tcp_nopush     on;

    keepalive_timeout  65;

    #gzip  on;
    client_max_body_size 128M;

    # 包含自定义配置文件
    include D:/dockerData/ragflow/nginx-1.21.1/conf/ragflow.conf;
}

proxy.conf

这个配置文件不做修改

ragflow.conf

server {
    listen 80;
    server_name _;
    # 设置根目录为 Windows 路径
    root D:/WorkSpace/ForAi/pythod/ragflow/web/dist;

    gzip on;
    gzip_min_length 1k;
    gzip_comp_level 9;
    gzip_types text/plain application/javascript application/x-javascript text/css application/xml text/javascript application/x-httpd-php image/jpeg image/gif image/png;
    gzip_vary on;
    gzip_disable "MSIE [1-6]\.";

    location ~ ^/(v1|api) {
        proxy_pass http://127.0.0.1:9380;
        include proxy.conf;
    }


    location / {
        index index.html;
        try_files $uri $uri/ /index.html;
    }

    # Cache-Control: max-age~@~AExpires
    location ~ ^/static/(css|js|media)/ {
        expires 10y;
        access_log off;
    }
}

2、前端项目build

我使用的nodejs版本是 20.15.0 如果你本地有多个nodejs版本可以使用nvm管理切换

# 进入web目录下
(ragflow) D:\WorkSpace\ForAi\pythod\ragflow>cd web
# 安装前端依赖
npm install
# build项目
npm run build

可以看到web目录下多了个dist,ragflow.conf配置文件里需要配置这个目录

3、启动nginx

D:\dockerData\ragflow\nginx-1.21.1>start nginx

五、下载模型

找到根目录下的download_deps.py直接运行

依赖安装会比较慢

运行完根目录下多了这些文件

六、后端项目启动

1、配置mysql、redis、minio、es、infinity

2、启动项目

需要启动两个文件

(1)api下的ragflow_server.py

(2)rag/svr下的task_executor.py

在启动时遇到了文件是utf-8格式,默认使用的是gbk,我处理方式是直接改了源码,把文件处理的格式改成了utf-8

import os
import json
current_file_path = os.path.dirname(os.path.abspath(__file__))
json_file_path = os.path.join(current_file_path, "res/good_sch.json")

with open(json_file_path, "r", encoding="utf-8") as file:
    GOOD_SCH = json.load(file)

import os
import json

current_file_path = os.path.dirname(os.path.abspath(__file__))

# 读取 corp.tks.freq.json 文件
with open(os.path.join(current_file_path, "res/corp.tks.freq.json"), "r", encoding="utf-8") as file:
    CORP_TKS = json.load(file)

# 读取 good_corp.json 文件
with open(os.path.join(current_file_path, "res/good_corp.json"), "r", encoding="utf-8") as file:
    GOOD_CORP = json.load(file)

# 读取 corp_tag.json 文件
with open(os.path.join(current_file_path, "res/corp_tag.json"), "r", encoding="utf-8") as file:
    CORP_TAG = json.load(file)

cnvs = json.load(open(os.path.join(dir, fnm), "r", encoding="utf-8"))

七、以上步骤做完即可通过http://127.0.0.1访问

相关推荐

每天一个 Python 库:datetime 模块全攻略,时间操作太丝滑!

在日常开发中,时间处理是绕不开的一块,比如:生成时间戳比较两个时间差转换为可读格式接口传参/前端展示/日志记录今天我们就用一个案例+代码+思维导图,带你完全搞定datetime模块的用法!...

字节跳动!2023全套Python入门笔记合集

学完python出来,已经工作3年啦,最近有很多小伙伴问我,学习python有什么用其实能做的有很多可以提高工作效率增强逻辑思维还能做爬虫网站数据分析等等!!最近也是整理了很多适合零基...

为什么你觉得Matplotlib用起来困难?因为你还没看过这个思维导图

前言Matplotlib是一个流行的Python库,可以很容易地用于创建数据可视化。然而,设置数据、参数、图形和绘图在每次执行新项目时都可能变得非常混乱和繁琐。而且由于应用不同,我们不知道选择哪一个图...

Python新手必看!30分钟搞懂break/continue(附5个实战案例)

一、跳转语句的使命当程序需要提前结束循环或跳过特定迭代时,break和continue就是你的代码急刹按钮和跳步指令。就像在迷宫探险中:break=发现出口立即离开continue=跳过陷阱继续前进二...

刘心向学(24)Python中的数据类(python中5种简单的数据类型)

分享兴趣,传播快乐,增长见闻,留下美好!亲爱的您,这里是LearningYard新学苑。今天小编为大家带来文章“刘心向学(24)Python中的数据类”欢迎您的访问。Shareinterest,...

刘心向学(25)Python中的虚拟环境(python虚拟环境安装和配置)

分享兴趣,传播快乐,增长见闻,留下美好!亲爱的您,这里是LearningYard新学苑。今天小编为大家带来文章“刘心向学(25)Python中的虚拟环境”欢迎您的访问。Shareinte...

栋察宇宙(八):Python 中的 wordcloud 库学习介绍

分享乐趣,传播快乐,增长见识,留下美好。亲爱的您,这里是LearingYard学苑!今天小编为大家带来“Python中的wordcloud库学习介绍”欢迎您的访问!Sharethefun,...

AI在用|ChatGPT、Claude 3助攻,1分钟GET高颜值思维导图

机器之能报道编辑:Cardinal以大模型、AIGC为代表的人工智能浪潮已经在悄然改变着我们生活及工作方式,但绝大部分人依然不知道该如何使用。因此,我们推出了「AI在用」专栏,通过直观、有趣且简洁的人...

使用DeepSeek + Python开发AI思维导图应用,非常强!

最近基于Deepseek+PythonWeb技术开发了一个AI对话自动生成思维导图的应用,用来展示下如何基于低门槛的Python相关技术栈,高效结合deepseek实现从应用场景到实际应用的快速落地...

10幅思维导图告诉你 - Python 核心知识体系

首先,按顺序依次展示了以下内容的一系列思维导图:基础知识,数据类型(数字,字符串,列表,元组,字典,集合),条件&循环,文件对象,错误&异常,函数,模块,面向对象编程;接着,结合这些思维导图主要参考的...

Python基础核心思维导图,让你轻松入门

Python基础核心思维导图【高清图文末获取】学习路线图就给大家看到这里了,需要的小伙伴下方获取获取方式看下方图片...

Python基础核心思维导图,学会事半功倍

Python基础核心思维导图【高清图文末获取】学习路线图就给大家看到这里了,需要的小伙伴下方获取获取方式看下方图片...

硬核!288页Python核心知识笔记(附思维导图,建议收藏)

今天就给大家分享一份288页Python核心知识笔记,相较于部分朋友乱糟糟的笔记,这份笔记更够系统地总结相关知识,巩固Python知识体系。文末获取完整版PDF该笔记学习思维导图:目录内容展示【领取方...

Python学习知识思维导图(高效学习)

Python学习知识思维导图python基础知识python数据类型条件循环列表元组字典集合字符串序列函数面向对象编程模块错误异常文件对象#python##python自学##编程#...

别找了!288页Python核心知识笔记(附思维导图,建议收藏)

今天就给大家分享一份288页Python核心知识笔记,相较于部分朋友乱糟糟的笔记,这份笔记更够系统地总结相关知识,巩固Python知识体系。文末获取完整版PDF该笔记学习思维导图:目录内容展示【领取方...

取消回复欢迎 发表评论: