百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

完全基于 Java 的开源深度学习平台,亚马逊的大佬带你上手

off999 2025-04-26 20:22 19 浏览 0 评论

本文适合有 Java 基础的人群

作者:DJL-Lanking

HelloGitHub 推出的《讲解开源项目》系列。有幸邀请到了亚马逊 + Apache 的工程师:Lanking,为我们讲解 DJL —— 完全由 Java 构建的深度学习平台。

介绍

许多年以来,一直都没有为 Java 量身定制的深度学习开发平台。用户必须要进行繁杂的项目配置,构建 class 才能最终打造出属于 Java 的深度学习应用。在那之后,依旧要面临着依赖项匹配维护等各种麻烦的问题。为了解决这个这个痛点,亚马逊开源了 Deep Java Library (DJL)

项目地址:https://github.com/awslabs/djl/

官网:https://djl.ai/

一个完全使用 Java 构建的深度学习平台。DJL 的开发者们也为它量身定制了各种有意思的运行环境,用户只需要少量配置,甚至直接在线就可以在 Java 上运行深度学习应用。

为了简化 Java 开发人员在深度学习上的痛点,我们推出了 DJL 未来实验室计划:致力于打造一个极简的 Java 运行环境,创造属于 Java 自己的深度学习工具箱。你可以轻松在线使用,或者离线使用它们来构建你的深度学习应用。我们的目标是,将深度学习更好的贴近 Java 开发者。

下面将介绍能够让你快速上手 DJL 的在线尝试地址或工具。

在线编译:Block Runner

在线尝试:https://djl.ai/website/demo.html

Block Runner 设计十分简单,它可以直接帮助你在线编译 Java 深度学习代码。如上所示,你只需点击 Run 就可以执行这些代码。我们提供了多种深度学习引擎供你选择。你可以轻松的在上面完成简单的深度学习运算以及推理任务。当你在构建完成之后,直接点击 Get Template 就可以获得一份直接在本地就能运行的 gradle 项目。所有的环境都已经配置好了,用编辑器打开就可以跑简单举一个例子,如下是使用 Apache MXNet 模型构建的一份图片分类应用代码,你可以直接复制到在线编辑器:

import ai.djl.inference.*;
import ai.djl.modality.*;
import ai.djl.modality.cv.*;
import ai.djl.modality.cv.transform.*;
import ai.djl.modality.cv.translator.*;
import ai.djl.repository.zoo.*;
import ai.djl.translate.*;

String modelUrl = "https://alpha-djl-demos.s3.amazonaws.com/model/djl-blockrunner/mxnet_resnet18.zip?model_name=resnet18_v1";
Criteria<Image, Classifications> criteria = Criteria.builder()
    .setTypes(Image.class, Classifications.class)
    .optModelUrls(modelUrl)
    .optTranslator(ImageClassificationTranslator.builder()
            .addTransform(new Resize(224, 224))
            .addTransform(new ToTensor())
            .optApplySoftmax(true).build())
    .build();
ZooModel<Image, Classifications> model = ModelZoo.loadModel(criteria);
Predictor<Image, Classifications> predictor = model.newPredictor();
String imageURL = "https://raw.githubusercontent.com/awslabs/djl/master/examples/src/test/resources/kitten.jpg";
Image image = ImageFactory.getInstance().fromUrl(imageURL);
predictor.predict(image);

在运行后,你会获得如下结果:

[
    class: "n02123045 tabby, tabby cat", probability: 0.41073
    class: "n02124075 Egyptian cat", probability: 0.29393
    class: "n02123159 tiger cat", probability: 0.19337
    class: "n02123394 Persian cat", probability: 0.04586
    class: "n02127052 lynx, catamount", probability: 0.00911
]

最后,你可以直接点击 Get Template 在本地运行。是不是很简单!现在这个组建支持 Apache MXNet/PyTorch/TensorFlow 三个后端引擎,后续还会增加更多的支持。

实现层面上,我们使用了 CodeMirror 在线编辑器以及 SpringBoot 进行后端托管。想了解更多,欢迎参阅实现代码 。

在线终端工具:JShell

在线尝试:https://djl.ai/website/demo.html#jshell

JShell 是一个 JShell 的改版,包含了 DJL 的特性。你可以直接集成已有的 Java 功能和 DJL 的 class 在线使用。我们为 JShell 提前准备了下面的引入:

import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.types.Shape;
import ai.djl.ndarray.index.NDIndex;
NDManager manager = NDManager.newBaseManager();

后端是基于 SpringBoot 的 server 架构,前端使用了 xtermjs。

目前这个命令行支持如下操作:

  • backspace删除输入
  • <- 和 -> 移动光标
  • 复制/粘贴代码功能
  • 输入clear进行清屏操作

通过网页中提供的几种简单案例,你可以轻松使用 NDArray 来完成你所需要的功能。

想了解我们是如何构建这个 JShell 应用的,请看实现代码 。

Java 版的 Jupyter Notebook

地址:https://github.com/awslabs/djl/tree/master/jupyter

什么?Jupyter Notebook?我们难道说的不是 Python?不!100% 纯 Java11。

通过 Spencer Park’s IJava 项目 启发, 我们将 DJL 集成在了 Jupyter Notebook 里面。不需要繁杂的配置,直接启动就能用。我们准备了一系列使用 Jupyter Notebook 构建的 Java 深度学习训练以及推理应用 Notebook。想了解更多就点击这里吧。

Java 版本的 Notebook 可以基本实现所有 Jupyter 在 Python 上的特性:

  • 支持每个代码块独立运行
  • 展示一张图片
  • 利用 Tablesaw 展示一个图表

相比于 Python,Java 的 Notebook 可以直接引入 Maven 的库,这样用户就无需担心项目配置等问题。同时这个 Notebook 也支持在 GPU 环境下运行,你可以轻松使用 Notebook 进行深度学习训练任务。

通过下面几个 Notebook 可以帮助你快速了解 DJL 的用法以及新特性:

  • 使用 ModelZoo 进行目标检测
  • 加载 PyTorch 预训练模型
  • 加载 Apache MXNet 预训练模型
  • 迁移学习案例
  • 问答系统案例

P.S:我们甚至还准备了基于 Java 的深度学习书,现在还处于预览版阶段,敬请期待。

关于 DJL 以及未来实验室计划


DJL 还是一个很年轻的框架,2019 年底发布,2020 年 3 月才真正支持了所有主流的深度学习框架 (TensorFlow、PyTorch MXNet)。你可以轻松的使用 DJL 来训练以及部署你的深度学习模型。它也包含了 70 多种来自 GluonCV、HuggingFace、TorchHub 以及 Keras 的预训练模型。

关于未来实验室:我们仍旧还有很多功能处于开发阶段,需要大量小伙伴去参与并且体验我们的新功能。下面是几个正在进行中的项目:

  • D2L - Java:为《动手学深度学习》 打造一本 Java 版本的书
  • DJL NLP WordEmbedding:为 DJL 提供更多 word embedding 的接口

相关推荐

Python Flask 容器化应用链路可观测

简介Flask是一个基于Python的轻量级Web应用框架,因其简洁灵活而被称为“微框架”。它提供了Web开发所需的核心功能,如请求处理、路由管理等,但不会强制开发者使用特定的工具或库。...

Python GUI应用开发快速入门(python开发软件教程)

一、GUI开发基础1.主流GUI框架对比表1PythonGUI框架比较框架特点适用场景学习曲线Tkinter内置库,简单小型应用,快速原型平缓PyQt功能强大,商用许可专业级桌面应用陡峭PySi...

【MCP实战】Python构建MCP应用全攻略:从入门到实战!

实战揭秘:Python Toga 打造跨平台 GUI 应用的神奇之旅

在Python的世界里,GUI(图形用户界面)开发工具众多,但要找到一款真正跨平台、易于使用且功能强大的工具并不容易。今天,我们就来深入探讨一下Toga——一款Python原生、操作系统原...

python应用目录规划(python的目录)

Python大型应用目录结构规划(企业级最佳实践)核心原则模块化:按业务功能拆分,高内聚低耦合可扩展性:支持插件机制和动态加载环境隔离:清晰区分开发/测试/生产环境自动化:内置标准化的构建测试部署流...

Python图形化应用开发框架:PyQt开发简介

PyQt概述定义:PyQt是Python绑定Qt框架的工具集,用于开发跨平台GUI应用程序原理:通过Qt的C++库提供底层功能,PyQt使用SIP工具生成Python绑定特点:支持Windows/ma...

[python] 基于PyOD库实现数据异常检测

PyOD是一个全面且易于使用的Python库,专门用于检测多变量数据中的异常点或离群点。异常点是指那些与大多数数据点显著不同的数据,它们可能表示错误、噪声或潜在的有趣现象。无论是处理小规模项目还是大型...

Python、Selenium 和 Allure 进行 UI 自动化测试的简单示例脚本

环境准备确保你已经安装了以下库:SeleniumAllurepytest你可以使用以下命令安装所需库:pipinstallseleniumallure-pytestpytest示例代码下面的代...

LabVIEW 与 Python 融合:打造强大测试系统的利器

在现代测试系统开发领域,LabVIEW和Python各自凭借独特优势占据重要地位。LabVIEW以图形化编程、仪器控制和实时系统开发能力见长;Python则凭借丰富的库资源、简洁语法和强大数...

软件测试进阶之自动化测试——python+appium实例

扼要:1、了解python+appium进行APP的自动化测试实例;2、能根据实例进行实训操作;本课程主要讲述用python+appium对APP进行UI自动化测试的例子。appium支持Androi...

Python openpyxl:读写样式Excel一条龙,测试报表必备!

无论你是测试工程师、数据分析师,还是想批量导出Excel的自动化工作者,只需一个库openpyxl,即可高效搞定Excel的各种需求!为什么选择openpyxl?支持.xlsx格式...

Python + Pytest 测试框架——数据驱动

引言前面已经和大家介绍过Unittest测试框架的数据驱动框架DDT,以及其实现原理。今天和大家分享的是Pytest测试框架的数据驱动,Pytest测试框架的数据驱动是由pytest自...

这款开源测试神器,圆了我玩游戏不用动手的梦想

作者:HelloGitHub-Anthony一天我在公司用手机看游戏直播,同事问我在玩什么游戏?我和他说在看直播,他恍然大悟:原来如此,我还纳闷你玩游戏,咋不用动手呢。。。。一语惊醒梦中人:玩游戏不用...

Python单元测试框架对比(pycharm 单元测试)

一、核心框架对比特性unittest(标准库)pytest(主流第三方)nose2(unittest扩展)doctest(文档测试)安装Python标准库pipinstallpytestp...

利用机器学习,进行人体33个2D姿态检测与评估

前几期的文章,我们分享了人脸468点检测与人手28点检测的代码实现过程,本期我们进行人体姿态的检测与评估通过视频进行人体姿势估计在各种应用中起着至关重要的作用,例如量化体育锻炼,手语识别和全身手势控制...

取消回复欢迎 发表评论: