手把手教使用python实现人脸识别(python 人脸)
off999 2025-05-05 18:06 18 浏览 0 评论
什么是人脸识别
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
目前的人脸识别技术已经非常成熟了,还发展成3D人脸识别。而且现在各大厂商也都提供了人脸识别的API接口供我们调用,可以说几行代码就可以完成人脸识别。但是人脸识别的根本还是基于图像处理。在Python中最强大的图像处理库就是OpenCV。
OpenCV简介
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
OpenCV基本使用
安装
pip install opencv-python # 基础库
pip install opencv-contrib-python # 扩展库
pip install opencv-python-headless
读取图片
读取和显示图片是最基本的操作了,OpenCV当中使用imread和imshow实现该操作
import cv2 as cv
# 读取图片,路径不能含有中文名,否则图片读取不出来
image = cv.imread('1111.jpg')
# 显示图片
cv.imshow('image', image)
# 等待键盘输入,单位是毫秒,0表示无限等待
cv.waitKey(0)
# 因为最终调用的是C++对象,所以使用完要释放内存
cv.destroyAllWindows()
将图片转为灰度图
OpenCV中数百中关于不同色彩控件之间转换的方法。目前最常用的有三种:灰度、BGR、HSV。
- 灰度色彩空间是通过去除彩色信息来讲图片转换成灰阶,灰度图会大量减少图像处理中的色彩处理,对人脸识别很有效。
- BGR每个像素都由一个三元数组来表示,分别代码蓝、绿、红三种颜色。python中还有一个库PIL,读取的图片通道是RGB,其实是一样的,只是颜色顺序不一样
- HSV,H是色调,S是饱和度,V是黑暗的程度
将图片转换为灰度图
import cv2 as cv
# 读取图片,路径不能含有中文名,否则图片读取不出来
image = cv.imread('1111.jpg')
# cv2读取图片的通道是BGR,
# PIL读取图片的通道是RGB
# code选择COLOR_BGR2GRAY,就是BGR to GRAY
gray_image = cv.cvtColor(image, code=cv.COLOR_BGR2GRAY)
# 显示图片
cv.imshow('image', gray_image)
# 等待键盘输入,单位是毫秒,0表示无限等待
cv.waitKey(0)
# 因为最终调用的是C++对象,所以使用完要释放内存
cv.destroyAllWindows()
绘制矩形
image = cv.imread('1111.jpg')
x, y, w, h = 50, 50, 80, 80
# 绘制矩形
cv.rectangle(image, (x, y, x+w, y+h), color=(0, 255, 0), thickness=2)
# 绘制圆形
cv.circle(image, center=(x + w//2, y + h//2), radius=w//2, color=(0, 0, 255), thickness=2)
cv.imshow('image', image)
cv.waitKey(0)
cv.destroyAllWindows()
人脸检测
人脸检测实际上是对图像提取特征,Haar特征是一种用于实现实时人脸跟踪的特征。每个Haar特征都描述了相邻图像区域的对比模式。比如边、定点和细线都能生成具有判别性的特征。OpenCV给我们提供了Haar特征数据,在cv2/data目录下,使用特征数据的方法def detectMultiScale(self, image, scaleFactor=None, minNeighbors=None, flags=None, minSize=None, maxSize=None)
- scaleFactor: 指定每个图像比例缩小多少图像
- minNeighbors: 指定每个候选矩形必须保留多少个邻居,值越大说明精度要求越高
- minSize:检测到的最小矩形大小
- maxSize: 检测到的最大矩形大小
检测图片中人脸
import os
import cv2 as cv
def face_detect_demo(image):
# 将图片转换为灰度图
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# 加载特征数据
face_detector = cv.CascadeClassifier(os.path.join(cv.data.haarcascades, 'haarcascade_frontalface_default.xml'))
faces = face_detector.detectMultiScale(gray)
for x, y, w, h in faces:
cv.rectangle(image, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
# 读取图片,路径不能含有中文名,否则图片读取不出来
image = cv.imread('2222.jpg')
face_detect_demo(image)
# 显示图片
cv.imshow('image', image)
# 等待键盘输入,单位是毫秒,0表示无限等待
cv.waitKey(0)
# 因为最终调用的是C++对象,所以使用完要释放内存
cv.destroyAllWindows()
采用默认参数,检测人脸数据不全,需要调整detectMultiScale函数的参数,调整为faces =
face_detector.detectMultiScale(gray, scaleFactor=1.02, minNeighbors=3)
我们发现除了检测到人脸数据,还有一些其他的脏数据,这个时候可以打印检测出的人脸数据位置和大小
faces = face_detector.detectMultiScale(gray, scaleFactor=1.02, minNeighbors=3)
for x, y, w, h in faces:
print(x, y, w, h) # 打印每一个检测到的数据位置和大小
cv.rectangle(image, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
从大小中我们看到最大的两个矩形,刚好是人脸数据,其余都是脏数据,那么继续修改函数参数faces =
face_detector.detectMultiScale(gray, scaleFactor=1.02, minNeighbors=3, minSize=(80, 80))
检测视频中人脸
视频就是一张一张的图片组成的,在视频的帧上面重复这个过程就能完成视频中的人脸检测了。视频读取OpenCV为我们提供了函数VideoCapture,参数可以是视频文件或者0(表示调用摄像头)
import cv2 as cv
# 人脸检测
def face_detect_demo(image):
try:
# 将图片转换为灰度图
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# 加载特征数据
face_detector = cv.CascadeClassifier(os.path.join(cv.data.haarcascades, 'haarcascade_frontalface_default.xml'))
faces = face_detector.detectMultiScale(gray)
for x, y, w, h in faces:
print(x, y, w, h)
cv.rectangle(image, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
except Exception as e:
pass
cap = cv.VideoCapture('人脸识别.mp4')
while cap.isOpened():
flag, frame = cap.read()
face_detect_demo(frame)
cv.imshow('result', frame)
if ord('q') == cv.waitKey(5):
break
cap.realse()
cv.destroyAllWindows()
这个我们是做的人脸识别,怎么把爱好都识别了,这么先进吗?很显然这不太符合我们的要求,爱好只能藏在心里,你给我检测出来就不行了。所以我们必须要进行优化处理。OpenCV为我们提供了一个机器学习的小模块,我们可以训练它,让它只识别我们需要的部分,不要乱猜测。
训练数据
训练数据就是我们把一些图片交给训练模型,让模型熟悉她,这样它就能更加准确的识别相同的图片。训练的数据一般我们可以从网上搜索:人脸识别数据库,或者从视频中保存美帧的数据作为训练集。所有的人脸识别算法在他们的train()函数中都有两个参数:图像数组和标签数组。这些标签标示进行识别时候的人脸ID,根据ID可以知道被识别的人是谁。
获取训练集
从视频中每隔5帧截取一个图片,保存成图片
import cv2
cap = cv2.VideoCapture('人脸识别.mp4')
number = 100
count = 1
while cap.isOpened() and number > 0:
flag, frame = cap.read()
if not flag:
break
if count % 5 == 0:
# 按照视频图像中人脸的大体位置进行裁剪,只取人脸部分
img = frame[70:280, 520:730]
cv2.imwrite('data/{}.png'.format(number), img)
number -= 1
count += 1
cap.release()
cv2.destroyAllWindows()
使用LBPH训练模型
def getImageAndLabels(path_list):
faces = []
ids = []
image_paths = [os.path.join(path_list, f) for f in os.listdir(path_list) if f.endswith('.png')]
face_detector = cv.CascadeClassifier(os.path.join(cv.data.haarcascades, 'haarcascade_frontalface_default.xml'))
for image in image_paths:
img = cv.imread(image)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray)
_id = int(os.path.split(image)[1].split('.')[0])
for x, y, w, h in faces:
faces.append(gray[y:y+h, x:x+w])
ids.append(_id)
return faces, ids
faces, ids = getImageAndLabels('data')
# 训练
recognizer = cv.face.LBPHFaceRecognizer_create()
recognizer.train(faces, np.array(ids))
# 保存训练特征
recognizer.write('trains/trains.yml')
基于LBPH的人脸识别
LBPH将检测到的人脸分为小单元,并将其与模型中的对应单元进行比较,对每个区域的匹配值产生一个直方图。调整后的区域中调用predict函数,该函数返回两个元素的数组,第一个元素是所识别的个体标签,第二个元素是置信度评分。所有的算法都有一个置信度评分阈值,置信度评分用来衡量图像与模型中的差距,0表示完全匹配。LBPH有一个好的识别参考值要低于50。基本步骤为:
- cv.VideoCapture读取视频
- Haar算法检测人脸数据
- 基于LBPH训练集得到准确人脸数据,并输出标记此人是谁
- 按置信度取准确度高的人脸标记出来
import os
import cv2 as cv
def face_detect_demo(image):
try:
global number
# 将图片转换为灰度图
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# 加载特征数据
faces = face_detector.detectMultiScale(gray, scaleFactor=1.02, minNeighbors=3)
for x, y, w, h in faces:
# 获取置信度,大于80表示取值错误
_id, confidence = recognizer.predict(gray[y:y + h, x:x + w])
if confidence < 80:
cv.rectangle(image, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
except Exception as e:
pass
def check_face():
cap = cv.VideoCapture('人脸识别.mp4')
while cap.isOpened():
flag, frame = cap.read()
if not flag:
break
face_detect_demo(frame)
cv.imshow('img', frame)
cv.waitKey(2)
cv.destroyAllWindows()
if __name__ == '__main__':
# 加载训练数据文件
recognizer = cv.face.LBPHFaceRecognizer_create()
recognizer.read('trains/trains.yml')
face_detector = cv.CascadeClassifier(os.path.join(cv.data.haarcascades, 'haarcascade_frontalface_default.xml'))
check_face()
总结
通过上面一步步的学习,你是不是对OpenCV人脸识别有个基本的认识了呢?但是我们也看到了,整个人脸识别的主要算法还是基于Haar,而且准确度并不是特别高,主要是会检测出很多非人脸的数据。LBPH是让我们给某个人脸进行标记,告诉我们他是谁,并没有提高实际的检测准确度。现在机器学习是非常火爆的,基于OpenCV的机器学习人脸识别也精确度也很高,下次我们在来对比几种机器学习人脸识别的库。
相关推荐
- pip的使用及配置_pip怎么配置
-
要使用python必须要学会使用pip,pip的全称:packageinstallerforpython,也就是Python包管理工具,主要是对python的第三方库进行安装、更新、卸载等操作,...
- Anaconda下安装pytorch_anaconda下安装tensorflow
-
之前的文章介绍了tensorflow-gpu的安装方法,也介绍了许多基本的工具与使用方法,具体可以看Ubuntu快速安装tensorflow2.4的gpu版本。pytorch也是一个十分流行的机器学...
- Centos 7 64位安装 python3的教程
-
wgethttps://www.python.org/ftp/python/3.10.13/Python-3.10.13.tgz#下载指定版本软件安装包tar-xzfPython-3.10.1...
- 如何安装 pip 管理工具_pip安装详细步骤
-
如何安装pip管理工具方法一:yum方式安装Centos安装python3和python3-devel开发包>#yuminstallgcclibffi-develpy...
- Python入门——从开发环境搭建到hello world
-
一、Python解释器安装1、在windows下步骤1、下载安装包https://www.python.org/downloads/打开后选择【Downloads】->【Windows】小编是一...
- 生产环境中使用的十大 Python 设计模式
-
在软件开发的浩瀚世界中,设计模式如同指引方向的灯塔,为我们构建稳定、高效且易于维护的系统提供了经过验证的解决方案。对于Python开发者而言,理解和掌握这些模式,更是提升代码质量、加速开发进程的关...
- 如何创建和管理Python虚拟环境_python怎么创建虚拟环境
-
在Python开发中,虚拟环境是隔离项目依赖的关键工具。下面介绍创建和管理Python虚拟环境的主流方法。一、内置工具:venv(Python3.3+推荐)venv是Python标准...
- 初学者入门Python的第一步——环境搭建
-
Python如今成为零基础编程爱好者的首选学习语言,这和Python语言自身的强大功能和简单易学是分不开的。今天千锋武汉Python培训小编将带领Python零基础的初学者完成入门的第一步——环境搭建...
- 全网最简我的世界Minecraft搭建Python编程环境
-
这篇文章将给大家介绍一种在我的世界minecraft里搭建Python编程开发环境的操作方法。目前看起来应该是全网最简单的方法。搭建完成后,马上就可以利用python代码在我的世界自动创建很多有意思的...
- Python开发中的虚拟环境管理_python3虚拟环境
-
Python开发中,虚拟环境管理帮助隔离项目依赖,避免不同项目之间的依赖冲突。虚拟环境的作用隔离依赖:不同项目可能需要不同版本的库,虚拟环境可以为每个项目创建独立的环境。避免全局污染:全局安装的库可...
- Python内置zipfile模块:操作 ZIP 归档文件详解
-
一、知识导图二、知识讲解(一)zipfile模块概述zipfile模块是Python内置的用于操作ZIP归档文件的模块。它提供了创建、读取、写入、添加及列出ZIP文件的功能。(二)ZipFile类1....
- Python内置模块pydoc :文档生成器和在线帮助系统详解
-
一、引言在Python开发中,良好的文档是提高代码可读性和可维护性的关键。pydoc是Python自带的一个强大的文档生成器和在线帮助系统,它可以根据Python模块自动生成文档,并支持多种输出格式...
- Python sys模块使用教程_python system模块
-
1.知识导图2.sys模块概述2.1模块定义与作用sys模块是Python标准库中的一个内置模块,提供了与Python解释器及其环境交互的接口。它包含了许多与系统相关的变量和函数,可以用来控制P...
- Python Logging 模块完全解读_python logging详解
-
私信我,回复:学习,获取免费学习资源包。Python中的logging模块可以让你跟踪代码运行时的事件,当程序崩溃时可以查看日志并且发现是什么引发了错误。Log信息有内置的层级——调试(deb...
- 软件测试|Python logging模块怎么使用,你会了吗?
-
Pythonlogging模块使用在开发和维护Python应用程序时,日志记录是一项非常重要的任务。Python提供了内置的logging模块,它可以帮助我们方便地记录应用程序的运行时信息、错误和调...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)