python 包之 Pillow 图像处理教程
off999 2025-05-05 18:07 20 浏览 0 评论
一、安装
- 被认为是python官方图像处理库
- PIL非常适合于图像归档以及图像的批处理任务。可以使用PIL创建缩略图,转换图像格式,打印图像等等
- PIL支持众多的GUI框架接口,可以用于图像展示
- PIL库同样支持图像的大小转换,图像旋转,以及任意的仿射变换
pip install Pillow二、打开图片
from PIL import Image
im = Image.open("picture.jpg")
im.show()三、转换格式并保存
from PIL import Image
im = Image.open("picture.jpg")
im.save("result.png")四、创建缩略图
from PIL import Image
im = Image.open("picture.jpg")
im.thumbnail((128, 128))
im.save("result.jpg")五、获取图片属性
- 获取图像的来源,如果图像不是从文件读取它的值就是None。
from PIL import Image
im = Image.open("picture.jpg")
print(im.format)六、图片信息
from PIL import Image
im = Image.open("picture.jpg")
print(im.info)七、调色板
- 如果图像的模式是“P”,则返回Image Palette类的实例;否则,将为None
from PIL import Image
im = Image.open("picture.jpg")
print(im.palette)八、画板
- 使用给定的变量mode和size生成画板
from PIL import Image
im= Image.new("RGB", (128, 128), "#FF0000")
im.show()九、图片模式
- 图像的模式,常见如下
- L:8位像素,黑白
- P:9位像素,使用调色板映射到任何其他模式
- 1:1位像素,黑白图像,存成8位像素
- RGB:3*8位像素,真彩
- RGBA:4*8位像素,真彩+透明通道
- CMYK:4*8位像素,印刷四色模式或彩色印刷模式
- YCbCr:3*8位像素,色彩视频格式
- I:32位整型像素
- F:33位浮点型像素
from PIL import Image
im = Image.open("picture.jpg")
print(im.mode)十、模式转换
- 将当前图像转换为其他模式,并且返回新的图像
from PIL import Image
im = Image.open("picture.jpg")
new_im = im.convert('L')
print(new_im.mode)
new_im.show()十一、矩阵模式转换
- 使用转换矩阵将一个“RGB”图像转换为“L”或者“RGB”图像
from PIL import Image
im = Image.open("picture.jpg")
print(im.mode)
matrix = (0.412453,0.357580, 0.180423, 0,
0.212671,0.715160, 0.072169, 0,
0.019334,0.119193, 0.950227, 0 )
new_im = im.convert("L", matrix)
print(new_im.mode)
new_im.show()十二、图片尺寸
- 获取图像的尺寸,按照像素数计算,它的返回值为宽度和高度的二元组
from PIL import Image
im = Image.open("picture.jpg")
print(im.size)十三、通道分离
- 返回当前图像各个通道组成的一个元组
- 分离一个 RGB 图像将产生三个新的图像
- 分别对应原始图像的每个通道红、绿、蓝三张图片
from PIL import Image
im = Image.open("picture.jpg")
r,g,b = im.split()
print(r.mode)
print(r.size)
print(im.size)十四、复制、裁剪、粘贴、合并
from PIL import Image
im = Image.open("picture.jpg")
# 复制
im.copy()
# 裁剪
im.crop((100, 100, 400, 400))
# 将一张图粘贴到另一张图像上
im.paste(im.transpose(Image.ROTATE_180),im)
# 合并类使用一些单通道图像,创建一个新的图像
Image.merge("RGB", im.split())十五、几何变换
- Image类有resize()、rotate()和transpose()、transform()方法进行几何变换
from PIL import Image
im = Image.open("picture.jpg")
# 修改尺寸
im.resize((128, 128))
# 角度旋转
im.rotate(45)
# 返回当前图像的翻转或者旋转的拷贝
# 值为:FLIP_LEFT_RIGHT,FLIP_TOP_BOTTOM,ROTATE_90,ROTATE_180,ROTATE_270
im.transpose(Image.ROTATE_90)
# 用给定的尺寸生成一张新的图像,与原图有相同的模式
im.transform((200, 200), Image.EXTENT, (0, 0, 300, 300))十六、高级图片处理
- 使用ImageEnhance对象就能快速地进行设置。 可以调整对比度、亮度、色平衡和锐利度
from PIL import Image
from PIL import ImageEnhance
im = Image.open("picture.jpg")
enh = ImageEnhance.Contrast(im)
enh.enhance(1.3).show("30% more contrast")十七、滤波器处理
from PIL import Image
from PIL import ImageFilter
im = Image.open("picture.jpg")
# 均值滤波
im1 = im.filter(ImageFilter.BLUR)
# 找轮廓
im2 = im.filter(ImageFilter.CONTOUR)
# 边缘检测
im3 = im.filter(ImageFilter.FIND_EDGES)
im.show()
im1.show()
im2.show()
im3.show()十八、设置透明度合成两张图
- 使用给定的两张图像及透明度变量alpha,生成一张新的图像
- 变量alpha值在0和1之间
- 若变量alpha为0.0,返回第一张图像的拷贝。若变量alpha为1.0,将返回第二张图像的拷贝。
from PIL import Image
im1 = Image.open("picture1.jpg")
im2 = Image.open("picture2.jpg")
im = Image.blend(im1, im2, 0.30)
im.show()十九、设置模式合成两张图
- 使用给定的两张图像及mask图像作为透明度,生成一张新的图像
- 图像的模式可以为“1”,“L”或者“RGBA”
- 所有图像必须有相同的尺寸
from PIL import Image
im1 = Image.open("picture1.jpg")
im2 = Image.open("picture2.jpg")
im = Image.composite(im1, im2, 'L')
im.show()二十、草稿模式
- 速度要求比质量高的场合
- 允许在不读取文件内容的情况下尽可能(可能不会完全等于给定的参数)地将图片转成给定模式和大小,这在生成缩略图的时候非常有效
from PIL import Image
im = Image.open("picture.jpg")
print(im.size,im.mode)
new_im = im.draft("L", (200,200))
print(new_im.size,new_im.mode)
new_im.show()二十一、获取通道名称
- 返回包括每个通道名称的元组
- 例如,对于RGB图像将返回(“R”,“G”,“B”)
from PIL import Image
im = Image.open("picture.jpg")
print(im.getbands())二十二、获取包围盒
- 计算图像非零区域的包围盒
- 这个包围盒是一个4元组,定义了左、上、右和下像素坐标
- 如果图像是空的,这个方法将返回空
from PIL import Image
im = Image.open("picture.jpg")
print(im.getbbox())二十三、获取像素值
from PIL import Image
im = Image.open("picture.jpg")
print(im.getdata())二十四、获取图片极值
- 返回一个2元组
- 包括该图像中的最小和最大值
from PIL import Image
im = Image.open("picture.jpg")
print(im.getextrema())二十五、指定位置像素值
from PIL import Image
im = Image.open("picture.jpg")
print(im.getpixel((10,0)))二十六、获取图像直方图
from PIL import Image
im = Image.open("picture.jpg")
im_histogram = im.histogram()
print(im_histogram[0])二十七、内存分配
- 为图像分配内存并从文件中加载它
- 返回一个用于读取和修改像素的像素访问对象
from PIL import Image
im = Image.open("picture.jpg")
pix = im.load()
print(pix[0,2])二十八、查找指定的帧
- 给定的动态图中查找指定的帧
- 如果查找超越了序列的末尾,则产生一个EOFError异常
- 当文件被打开时,PIL库自动指定到第0帧上
from PIL import Image
im_gif = Image.open("loading.gif")
print(im_gif.mode)
# 默认打开时是第0帧
im_gif.show()
im_gif.seek(1)
im_gif.show()
im_gif.seek(3)
im_gif.show()二十九、获取当前帧位置
from PIL import Image
im_gif = Image.open("loading.gif")
print(im_gif.tell())
im_gif.seek(3)
print(im_gif.tell())来源:
https://www.cnblogs.com/autofelix/p/16128525.html
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
