Tensor:Pytorch神经网络界的Numpy
off999 2025-07-06 15:52 48 浏览 0 评论
Tensor
Tensor,它可以是0维、一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便。
但它们也不相同,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。
对于Tensor,从接口划分,我们大致可分为2类:
1.torch.function:如torch.sum、torch.add等。2.tensor.function:如tensor.view、tensor.add等。
而从是否修改自身来划分,会分为如下2类:
1.不修改自身数据,如x.add(y),x的数据不变,返回一个新的Tensor。2.修改自身数据,如x.add_(y),运算结果存在x中,x被修改。
简单的理解就是方法名带不带下划线的问题。
现在,我们来实现2个数组对应位置相加,看看其效果就近如何:
import torch
x = torch.tensor([1, 2])
y = torch.tensor([3, 4])
print(x + y)
print(x.add(y))
print(x)
print(x.add_(y))
print(x)
运行之后,效果如下:
下面,我们来正式讲解Tensor的使用方式。
创建Tensor
与Numpy一样,创建Tensor也有很多的方法,可以自身的函数进行生成,也可以通过列表或者ndarray进行转换,同样也可以指定维度等。具体方法如下表(数组即张量):
函数 | 意义 |
Tensor(*size) | 直接从参数构造,支持list,Numpy数组 |
eye(row,column) | 创建指定行列的二维Tensor |
linspace(start,end,steps) | 从start到end,均匀切分成steps份 |
logspace(start,end,steps) | 从10^start到10^and,均分成steps份 |
rand/randn(*size) | 生成[0,1)均匀分布/标准正态分布的数据 |
ones(*size) | 生成指定shape全为1的张量 |
zeros(*size) | 生成指定shape全为0的张量 |
ones_like(t) | 返回与t的shape相同的张量,且元素全为1 |
zeros_like(t) | 返回与t的shape相同的张量,且元素全为0 |
arange(start,end,step) | 在区间[start,end)上,以间隔step生成一个序列张量 |
from_Numpy(ndarray) | 从ndarray创建一个Tensor |
这里需要注意Tensor有大写的方法也有小写的方法,具体效果我们先来看看代码:
import torch
t1 = torch.tensor(1)
t2 = torch.Tensor(1)
print("值{0},类型{1}".format(t1, t1.type()))
print("值{0},类型{1}".format(t2, t2.type()))
运行之后,效果如下:
可以看到,tensor与Tensor生成的值的类型就不同,而且t2(Tensor)返回一个大小为1的张量,而t1(tensor)返回的就是1这个值。
其他示例如下:
import torch
import numpy as np
t1 = torch.zeros(1, 2)
print(t1)
t2 = torch.arange(4)
print(t2)
t3 = torch.linspace(10, 5, 6)
print(t3)
nd = np.array([1, 2, 3, 4])
t4 = torch.from_numpy(nd)
print(t4)
其他例子基本与上面基本差不多,这里不在赘述。
修改Tensor维度
同样的与Numpy一样,Tensor一样有维度的修改函数,具体的方法如下表所示:
函数 | 意义 |
size() | 返回张量的shape,即维度 |
numel(input) | 计算张量的元素个数 |
view(*shape) | 修改张量的shape,但View返回的对象与源张量共享内存,修改一个,另一个也被修改。Reshape将生成新的张量,而不要求源张量是连续的,View(-1)展平数组 |
resize | 类似与view,但在size超出时,会重新分配内存空间 |
item | 若张量为单元素,则返回Python的标量 |
unsqueeze | 在指定的维度增加一个“1” |
squeeze | 在指定的维度压缩一个“1” |
示例代码如下所示:
import torch
t1 = torch.Tensor([[1, 2]])
print(t1)
print(t1.size())
print(t1.dim())
print(t1.view(2, 1))
print(t1.view(-1))
print(torch.unsqueeze(t1, 0))
print(t1.numel())
运行之后,效果如下:
截取元素
当然,我们创建Tensor张量,是为了使用里面的数据,那么就不可避免的需要获取数据进行处理,具体截取元素的方式如表:
函数 | 意义 |
index_select(input,dim,index) | 在指定维度选择一些行或者列 |
nonzero(input) | 获取非0元素的下标 |
masked_select(input,mask) | 使用二元值进行选择 |
gather(input,dim,index) | 在指定维度上选择数据,输出的维度与index一致(index的类型必须是LongTensor类型的) |
scatter_(input,dim,index,src) | 为gatter的反操作,根据指定索引补充数据(将src中数据根据index中的索引按照dim的方向填进input中) |
示例代码如下所示:
import torch
# 设置随机数种子,保证每次运行结果一致
torch.manual_seed(100)
t1 = torch.randn(2, 3)
# 打印t1
print(t1)
# 输出第0行数据
print(t1[0, :])
# 输出t1大于0的数据
print(torch.masked_select(t1, t1 > 0))
# 输出t1大于0的数据索引
print(torch.nonzero(t1))
# 获取第一列第一个值,第二列第二个值,第三列第二个值为第1行的值
# 获取第二列的第二个值,第二列第二个值,第三列第二个值为第2行的值
index = torch.LongTensor([[0, 1, 1], [1, 1, 1]])
# 取0表示以行为索引
a = torch.gather(t1, 0, index)
print(a)
# 反操作填0
z = torch.zeros(2, 3)
print(z.scatter_(1, index, a))
运行之后,效果如下:
我们a = torch.gather(t1, 0, index)对其做了一个图解,方便大家理解。如下图所示:
当然,我们直接有公司计算,因为这么多数据标线实在不好看,这里博主列出转换公司供大家参考:
当dim=0时,out[i,j]=input[index[i,j]][j]
当dim=1时,out[i,j]=input[i][index[i][j]]
简单的数学运算
与Numpy一样,Tensor也支持数学运算。这里,博主列出了常用的数学运算函数,方便大家参考:
函数 | 意义 |
abs/add | 绝对值/加法 |
addcdiv(t,v,t1,t2) | t1与t2逐元素相除后,乘v加t |
addcmul(t,v,t1,t2) | t1与t2逐元素相乘后,乘v加t |
ceil/floor | 向上取整/向下取整 |
clamp(t,min,max) | 将张量元素限制在指定区间 |
exp/log/pow | 指数/对数/幂 |
mul(或*)/neg | 逐元素乘法/取反 |
sigmoid/tanh/softmax | 激活函数 |
sign/sqrt | 取符号/开根号 |
需要注意的是,上面表格所有的函数操作均会创建新的Tensor,如果不需要创建新的,使用这些函数的下划线"_"版本。
示例如下:
t = torch.Tensor([[1, 2]])
t1 = torch.Tensor([[3], [4]])
t2 = torch.Tensor([5, 6])
# t+0.1*(t1/t2)
print(torch.addcdiv(t, 0.1, t1, t2))
# t+0.1*(t1*t2)
print(torch.addcmul(t, 0.1, t1, t2))
print(torch.pow(t,3))
print(torch.neg(t))
运行之后,效果如下:
上面的这些函数都很好理解,只有一个函数相信没接触机器学习的时候,不大容易理解。也就是sigmoid()激活函数,它的公式如下:
归并操作
简单的理解,就是对张量进行归并或者说合计等操作,这类操作的输入输出维度一般并不相同,而且往往是输入大于输出维度。而Tensor的归并函数如下表所示:
函数 | 意义 |
cumprod(t,axis) | 在指定维度对t进行累积 |
cumsum | 在指定维度对t进行累加 |
dist(a,b,p=2) | 返回a,b之间的p阶范数 |
mean/median | 均值/中位数 |
std/var | 标准差/方差 |
norm(t,p=2) | 返回t的p阶范数 |
prod(t)/sum(t) | 返回t所有元素的积/和 |
示例代码如下所示:
t = torch.linspace(0, 10, 6)
a = t.view((2, 3))
print(a)
b = a.sum(dim=0)
print(b)
b = a.sum(dim=0, keepdim=True)
print(b)
运行之后,效果如下:
需要注意的是,sum函数求和之后,dim的元素个数为1,所以要被去掉,如果要保留这个维度,则应当keepdim=True,默认为False。
比较操作
在量化交易中,我们一般会对股价进行比较。而Tensor张量同样也支持比较的操作,一般是进行逐元素比较。具体函数如下表:
函数 | 意义 |
equal | 比较张量是否具有相同的shape与值 |
eq | 比较张量是否相等,支持broadcast |
ge/le/gt/lt | 大于/小于比较/大于等于/小于等于比较 |
max/min(t,axis) | 返回最值,若指定axis,则额外返回下标 |
topk(t,k,dim) | 在指定的dim维度上取最高的K个值 |
示例代码如下所示:
t = torch.Tensor([[1, 2], [3, 4]])
t1 = torch.Tensor([[1, 1], [4, 4]])
# 获取最大值
print(torch.max(t))
# 比较张量是否相等
# equal直接返回True或False
print(torch.equal(t, t1))
# eq返回对应位置是否相等的布尔值与两者维度相同
print(torch.eq(t, t1))
# 取最大的2个元素,返回索引与值
print(torch.topk(t, 1, dim=0))
运行之后,输出如下:
矩阵运算
机器学习与深度学习中,存在大量的矩阵运算。与Numpy一样常用的矩阵运算一样,一种是逐元素相乘,一种是点积乘法。函数如下表所示:
函数 | 意义 |
dot(t1,t2) | 计算t1与t2的点积,但只能计算1维张量 |
mm(mat1,mat2) | 计算矩阵乘法 |
bmm(tatch1,batch2) | 含batch的3D矩阵乘法 |
mv(t1,v1) | 计算矩阵与向量乘法 |
t | 转置 |
svd(t) | 计算t的SVD分解 |
这里有3个主要的点积计算需要区分,dot()函数只能计算1维张量,mm()函数只能计算二维的张量,bmm只能计算三维的矩阵张量。示例如下:
# 计算1维点积
a = torch.Tensor([1, 2])
b = torch.Tensor([3, 4])
print(torch.dot(a, b))
# 计算2维点积
a = torch.randint(10, (2, 3))
b = torch.randint(6, (3, 4))
print(torch.mm(a, b))
# 计算3维点积
a = torch.randint(10, (2, 2, 3))
b = torch.randint(6, (2, 3, 4))
print(torch.bmm(a, b))
运行之后,输出如下:
相关推荐
- Linux 网络协议栈_linux网络协议栈
-
前言;更多学习资料(包含视频、技术学习路线图谱、文档等)后台私信《资料》免费领取技术点包含了C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,Z...
- 揭秘 BPF map 前生今世_bpfdm
-
1.前言众所周知,map可用于内核BPF程序和用户应用程序之间实现双向的数据交换,为BPF技术中的重要基础数据结构。在BPF程序中可以通过声明structbpf_map_def...
- 教你简单 提取fmpeg 视频,音频,字幕 方法
-
ffmpeg提取视频,音频,字幕方法(HowtoExtractVideo,Audio,SubtitlefromOriginalVideo?)1.提取视频(ExtractVi...
- Linux内核原理到代码详解《内核视频教程》
-
Linux内核原理-进程入门进程进程不仅仅是一段可执行程序的代码,通常进程还包括其他资源,比如打开的文件,挂起的信号,内核内部的数据结构,处理器状态,内存地址空间,或多个执行线程,存放全局变量的数据段...
- Linux C Socket UDP编程详解及实例分享
-
1、UDP网络编程主要流程UDP协议的程序设计框架,客户端和服务器之间的差别在于服务器必须使用bind()函数来绑定侦听的本地UDP端口,而客户端则可以不进行绑定,直接发送到服务器地址的某个端口地址。...
- libevent源码分析之bufferevent使用详解
-
libevent的bufferevent在event的基础上自己维护了一个buffer,这样的话,就不需要再自己管理一个buffer了。先看看structbufferevent这个结构体struct...
- 一次解决Linux内核内存泄漏实战全过程
-
什么是内存泄漏:程序向系统申请内存,使用完不需要之后,不释放内存还给系统回收,造成申请的内存被浪费.发现系统中内存使用量随着时间的流逝,消耗的越来越多,例如下图所示:接下来的排查思路是:1.监控系统中...
- 彻底搞清楚内存泄漏的原因,如何避免内存泄漏,如何定位内存泄漏
-
作为C/C++开发人员,内存泄漏是最容易遇到的问题之一,这是由C/C++语言的特性引起的。C/C++语言与其他语言不同,需要开发者去申请和释放内存,即需要开发者去管理内存,如果内存使用不当,就容易造成...
- linux网络编程常见API详解_linux网络编程视频教程
-
Linux网络编程API函数初步剖析今天我们来分析一下前几篇博文中提到的网络编程中几个核心的API,探究一下当我们调用每个API时,内核中具体做了哪些准备和初始化工作。1、socket(family...
- Linux下C++访问web—使用libcurl库调用http接口发送解析json数据
-
一、背景这两天由于一些原因研究了研究如何在客户端C++代码中调用web服务端接口,需要访问url,并传入json数据,拿到返回值,并解析。 现在的情形是远程服务端的接口参数和返回类型都是json的字符...
- 平衡感知调节:“系统如人” 视角下的架构设计与业务稳定之道
-
在今天这个到处都是数字化的时代,系统可不是一堆冷冰冰的代码。它就像一个活生生的“数字人”,没了它,业务根本转不起来。总说“技术要为业务服务”,但实际操作起来问题不少:系统怎么才能快速响应业务需求?...
- 谈谈分布式文件系统下的本地缓存_什么是分布式文件存储
-
在分布式文件系统中,为了提高系统的性能,常常会引入不同类型的缓存存储系统(算法优化所带来的的效果可能远远不如缓存带来的优化效果)。在软件中缓存存储系统一般可分为了两类:一、分布式缓存,例如:Memca...
- 进程间通信之信号量semaphore--linux内核剖析
-
什么是信号量信号量的使用主要是用来保护共享资源,使得资源在一个时刻只有一个进程(线程)所拥有。信号量的值为正的时候,说明它空闲。所测试的线程可以锁定而使用它。若为0,说明它被占用,测试的线程要进入睡眠...
- Qt编写推流程序/支持webrtc265/从此不用再转码/打开新世界的大门
-
一、前言在推流领域,尤其是监控行业,现在主流设备基本上都是265格式的视频流,想要在网页上直接显示监控流,之前的方案是,要么转成hls,要么魔改支持265格式的flv,要么265转成264,如果要追求...
- 30 分钟搞定 SpringBoot 视频推拉流!实战避坑指南
-
30分钟搞定SpringBoot视频推拉流!实战避坑指南在音视频开发领域,SpringBoot凭借其快速开发特性,成为很多开发者实现视频推拉流功能的首选框架。但实际开发中,从环境搭建到流处理优...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)