百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

第十二章:Python与数据处理和可视化

off999 2025-08-02 21:10 15 浏览 0 评论

12.1 使用 pandas进行数据处理

12.1.1 理论知识

pandas 是 Python 中最常用的数据处理库之一,它提供了高效的数据结构和数据分析工具。pandas 的核心数据结构是 Series(一维数据)和 DataFrame(二维数据,类似于表格),使得处理和分析结构化数据变得非常方便。它支持从各种数据源(如 CSV、Excel、SQL 数据库等)读取数据,进行数据清洗、转换、合并、分组等操作。

12.1.2 示例代码

import pandas as pd

# 从 CSV 文件读取数据
data = pd.read_csv('data.csv')

# 查看数据的前几行
print(data.head())

# 数据基本信息
print(data.info())

# 数据统计摘要
print(data.describe())

# 选择列
selected_column = data['column_name']
print(selected_column)

# 过滤数据
filtered_data = data[data['column_name'] > 10]
print(filtered_data)

12.1.3 代码解释

  • 首先导入 pandas 库并简写成 pd。
  • 使用 pd.read_csv('data.csv') 从名为 data.csv 的文件中读取数据,并将其存储在 data 这个 DataFrame 对象中。
  • data.head() 用于查看 DataFrame 的前几行(默认前 5 行),帮助快速了解数据的结构。
  • data.info() 提供数据的基本信息,包括每列的数据类型、非空值数量等。
  • data.describe() 生成数据的统计摘要,如计数、均值、标准差、最小值、最大值等。
  • data['column_name'] 选择名为 column_name 的列,返回一个 Series 对象。
  • data[data['column_name'] > 10] 根据条件 column_name 列的值大于 10 过滤数据,返回满足条件的 DataFrame。

12.2 使用 numpy进行数值计算

12.2.1 理论知识

numpy 是 Python 中用于数值计算的基础库,它提供了高性能的多维数组对象 ndarray 以及相关的操作函数。numpy 的数组在存储和计算效率上比 Python 原生列表更高,尤其在处理大规模数值数据时优势明显。它支持各种数学运算、线性代数运算、随机数生成等功能。

12.2.2 示例代码

import numpy as np

# 创建一维数组
arr1 = np.array([1, 2, 3, 4, 5])
print(arr1)

# 创建二维数组
arr2 = np.array([[1, 2, 3], [4, 5, 6]])
print(arr2)

# 数组运算
result = arr1 * 2
print(result)

# 矩阵乘法
matrix1 = np.array([[1, 2], [3, 4]])
matrix2 = np.array([[5, 6], [7, 8]])
matrix_product = np.dot(matrix1, matrix2)
print(matrix_product)

# 生成随机数组
random_arr = np.random.rand(3, 3)
print(random_arr)

12.2.3 代码解释

  • 导入 numpy 库并简写成 np。
  • 使用 np.array() 创建一维数组 arr1 和二维数组 arr2 并打印。
  • 对 arr1 进行乘法运算 arr1 * 2,numpy 会对数组中的每个元素进行乘法操作,并返回新的数组。
  • 使用 np.dot() 进行矩阵乘法,计算 matrix1 和 matrix2 的乘积并打印。
  • np.random.rand(3, 3) 生成一个形状为 (3, 3) 的随机数组,其中的元素是 0 到 1 之间的随机浮点数并打印。

12.3 使用 matplotlib进行数据可视化

12.3.1 理论知识

matplotlib 是 Python 中最常用的数据可视化库之一,它提供了类似 MATLAB 的绘图接口,能够创建各种类型的图表,如折线图、柱状图、散点图、饼图等。通过 matplotlib,可以将数据以直观的图形方式展示出来,便于理解和分析数据。

12.3.2 示例代码

import matplotlib.pyplot as plt
import numpy as np

# 生成数据
x = np.linspace(0, 10, 100)
y = np.sin(x)

# 绘制折线图
plt.plot(x, y)
plt.title('正弦函数曲线')
plt.xlabel('x 值')
plt.ylabel('sin(x) 值')
plt.show()


# 绘制柱状图
categories = ['A', 'B', 'C']
values = [25, 40, 15]
plt.bar(categories, values)
plt.title('分类数据柱状图')
plt.xlabel('类别')
plt.ylabel('数值')
plt.show()

12.3.3 代码解释

  • 导入 matplotlib.pyplot 库并简写成 plt,同时导入 numpy 库用于生成数据。
  • 使用 np.linspace(0, 10, 100) 生成在 0 到 10 之间均匀分布的 100 个点作为 x 轴数据,np.sin(x) 计算对应的正弦值作为 y 轴数据。
  • plt.plot(x, y) 绘制折线图,plt.title()、plt.xlabel() 和 plt.ylabel() 分别设置图表标题、x 轴标签和 y 轴标签,最后 plt.show() 显示图表。
  • 定义类别列表 categories 和对应数值列表 values,使用 plt.bar(categories, values) 绘制柱状图,同样设置标题、坐标轴标签后通过 plt.show() 显示图表。

12.4 使用 seaborn进行高级数据可视化

12.4.1 理论知识

seaborn 是基于 matplotlib 的高级数据可视化库,它提供了更美观、更简洁的绘图接口,并且对统计数据的可视化支持更好。seaborn 可以轻松创建复杂的图表,如箱线图、小提琴图、热力图等,在数据分析和探索性数据分析(EDA)中非常有用。

12.4.2 示例代码

import seaborn as sns
import pandas as pd
import numpy as np

# 生成示例数据
data = {
    '类别': np.repeat(['A', 'B', 'C'], 30),
    '数值': np.random.randn(90)
}
df = pd.DataFrame(data)

# 绘制箱线图
sns.boxplot(x='类别', y='数值', data=df)
plt.title('不同类别数值的箱线图')
plt.show()


# 绘制热力图
correlation = df.corr()
sns.heatmap(correlation, annot=True, cmap='coolwarm')
plt.title('数据相关性热力图')
plt.show()

12.4.3 代码解释

  • 导入 seaborn 库并简写成 sns,同时导入 pandas 和 numpy 库。
  • 使用字典生成示例数据,并通过 pd.DataFrame() 将其转换为 DataFrame 对象 df。
  • sns.boxplot(x='类别', y='数值', data=df) 绘制箱线图,展示不同类别下数值的分布情况,设置图表标题后用 plt.show() 显示。
  • 计算 df 的相关性矩阵 correlation,使用 sns.heatmap() 绘制热力图,annot=True 表示在热力图上显示数值,cmap='coolwarm' 设置颜色映射,设置标题后通过 plt.show() 显示图表。

相关推荐

Alist 玩家请进:一键部署全新分支 Openlist,看看香不香!

Openlist(其前身是鼎鼎大名的Alist)是一款功能强大的开源文件列表程序。它能像“万能钥匙”一样,解锁并聚合你散落在各处的云盘资源——无论是阿里云盘、百度网盘、GoogleDrive还是...

白嫖SSL证书还自动续签?这个开源工具让我告别手动部署

你还在手动部署SSL证书?你是不是也遇到过这些问题:每3个月续一次Let'sEncrypt证书,忘了就翻车;手动配置Nginx,重启服务,搞一次SSL得花一下午;付费证书太贵,...

Docker Compose:让多容器应用一键起飞

CDockerCompose:让多容器应用一键起飞"曾经我也是一个手动启动容器的少年,直到我的膝盖中了一箭。"——某位忘记--link参数的运维工程师引言:容器化的烦恼与...

申请免费的SSL证书,到期一键续签

大家好,我是小悟。最近帮朋友配置网站HTTPS时发现,还有人对宝塔面板的SSL证书功能还不太熟悉。其实宝塔早就内置了免费的Let'sEncrypt证书申请和一键续签功能,操作简单到连新手都能...

飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx

前面分享了两期TVGate:Q大的转发代理工具TVGate升级了,操作更便捷,增加了新的功能跨平台内网转发神器TVGate部署与使用初体验现在项目已经开源,并支持Docker部署,本文介绍如何通...

Docker Compose 编排实战:一键部署多容器应用!

当项目变得越来越复杂,一个服务已经无法满足需求时,你可能需要同时部署数据库、后端服务、前端网页、缓存组件……这时,如果还一个一个手动dockerrun,简直是灾难这就是DockerCompo...

深度测评:Vue、React 一键部署的神器 PinMe

不知道大家有没有这种崩溃瞬间:领导突然要看项目Demo,客户临时要体验新功能,自己写的小案例想发朋友圈;找运维?排期?还要走工单;自己买服务器?域名、SSL、Nginx、防火墙;本地起服务?断电、关...

超简单!一键启动多容器,解锁 Docker Compose 极速编排秘籍

想要用最简单的方式在本地复刻一套完整的微服务环境?只需一个docker-compose.yml文件,你就能一键拉起N个容器,自动组网、挂载存储、环境隔离,全程无痛!下面这份终极指南,教你如何用...

日志文件转运工具Filebeat笔记_日志转发工具

一、概述与简介Filebeat是一个日志文件转运工具,在服务器上以轻量级代理的形式安装客户端后,Filebeat会监控日志目录或者指定的日志文件,追踪读取这些文件(追踪文件的变化,不停的读),并将来自...

K8s 日志高效查看神器,提升运维效率10倍!

通常情况下,在部署了K8S服务之后,为了更好地监控服务的运行情况,都会接入对应的日志系统来进行检测和分析,比如常见的Filebeat+ElasticSearch+Kibana这一套组合...

如何给网站添加 https_如何给网站添加证书

一、简介相信大家都知道https是更加安全的,特别是一些网站,有https的网站更能够让用户信任访问接下来以我的个人网站五岁小孩为例子,带大家一起从0到1配置网站https本次配置的...

10个Linux文件内容查看命令的实用示例

Linux文件内容查看命令30个实用示例详细介绍了10个Linux文件内容查看命令的30个实用示例,涵盖了从基本文本查看、分页浏览到二进制文件分析的各个方面。掌握这些命令帮助您:高效查看各种文本文件内...

第13章 工程化实践_第13章 工程化实践课

13.1ESLint+Prettier代码规范统一代码风格配置//.eslintrc.jsmodule.exports={root:true,env:{node...

龙建股份:工程项目中标_龙建股份有限公司招聘网

404NotFoundnginx/1.6.1【公告简述】2016年9月8日公告,公司于2016年9月6日收到苏丹共和国(简称“北苏丹”)喀土穆州基础设施与运输部公路、桥梁和排水公司出具的中标通知书...

福田汽车:获得政府补助_福田 补贴

404NotFoundnginx/1.6.1【公告简述】2016年9月1日公告,自2016年8月17日至今,公司共收到产业发展补助、支持资金等与收益相关的政府补助4笔,共计5429.08万元(不含...

取消回复欢迎 发表评论: