Python绘制可爱的图表 cutecharts
off999 2025-08-02 21:10 26 浏览 0 评论
一个很酷的python手绘样式可视化包——可爱的图表 cutecharts。Cutecharts 非常适合为图表提供更个性化的触感。
Cutecharts 与常规的 Matplotlib 和 Seaborn 库完全不同,它可以查看手工制作的图表,并在将鼠标悬停在图表上时显示值。Matplotlib 图表中没有悬停效果,这是可爱图表的一个优势。与 seaborn 相比,在可爱图表中创建图表的时间要长一些,但代码数量仍然比标准 matplotlib 库少。
该包可用于生成以下类型的图表。目前,该库支持五种不同的图表——条形图、饼图、雷达图、散点图和折线图。
安装cutecharts
这是个python第三方库,要创建此图表,需要安装cutecharts库。具体安装方法与其他库一样。
pip install cutecharts
导入库
import cutecharts.charts as ctc
import pandas as pd
数据集
看看 TMBD 数据是什么样子的?数据有 21 列。
df = pd.read_csv(r'tmdb-movies.csv')
df.head(2)
数据说明
- Popularity流行度: 指定电影流行度的数字量
- Budget预算: 电影制作的预算。
- Revenue收入: 电影产生的全球收入
- Original Title原片名: 翻译或改编前电影的片名。
- Cast演员: 在电影中扮演角色的演员姓名
- Homepage主页: 指向电影主页的链接。
- Director导演: 导演电影的导演姓名。
- Title片名: 电影名称
- Keywords关键字: 与电影相关的关键字或标签。
- Overview概述: 对电影的简要描述
- Runtime运行时间: 以分钟为单位的电影运行时间。
- Genres类型: 电影的类型,剧情、动作、喜剧、惊悚等。
- Production Company制作公司: 电影的制作公司。
- Vote Count投票数: 收到的票数。
- Vote Average投票平均: 电影收到的平均评分。
日期时间
- Release Date上映日期: 电影上映的日期。
- Release Year发行年份: 电影发行的年份。
数据清洗
先清理数据,然后会看到可爱的图表。
将特征更改为正确的日期时间格式并将流行功能四舍五入到小数点后两位,以获得更多内容。
df['release_date'] = pd.to_datetime(df['release_date'])
df['popularity'] = round(df['popularity'], 2)
删除不必要的功能
df.drop(['imdb_id', 'homepage', 'budget_adj','revenue_adj'],
axis=1, inplace=True)
用missing替换特征nan值
df['tagline'].fillna('missing',inplace=True)
df['keywords'].fillna('missing',inplace=True)
df['production_companies'].fillna('missing',inplace=True)
df['cast'].fillna('missing',inplace=True)
df['director'].fillna('missing',inplace=True)
df['genres'].fillna('missing',inplace=True)
df['overview'].fillna('missing',inplace=True)
从预算和收入中删除等于 0 的值。
df.drop(df[(df['budget']==0) & (df['revenue']==0)].index,
inplace=True)
现在,数据是干净的,现在可以进一步创建一些可爱的图表。
cutecharts中使用的参数
分配要的图表名称,例如,要一个饼图然后运行下面的代码。
chart = ctc.Pie()
设置需要width, height在参数中添加的图表的标题、宽度和高度。
chart = ctc.Pie('Title', width='600px', height='300px')
设置图表选项,可以将使用set_options()函数。
chart.set_options()
设置x和y标签的标题,使用x_label, y_label传入set_options()函数示例如下。
chart.set_options(x_label='X Labels',
y_label='Y Labels')
最后,使用一个函数来显示图表render_notebook(),下面给出一个例子。
chart.render_notebook()
绘制饼图
要制作的图表是甜甜圈图表。看到发行量最高的电影的前 5 年。
df_year = df['release_year'].value_counts(
).reset_index().sort_values(by='index',
ascending=False)[:5].rename(columns={'index':'release_year',
'release_year':'Count'})
chart = ctc.Pie('Top 5 years', width='600px', height='300px')
chart.set_options(labels=list(df_year['release_year']), inner_radius=0)
chart.add_series(list(df_year['Count']))
chart.render_notebook()
绘制圆环图
df_year = df['release_year'].value_counts(
).reset_index().sort_values(by='index',
ascending=False)[:5].rename(columns={'index':'release_year',
'release_year':'Count'})
chart = ctc.Pie('Top 5 years', width='600px', height='300px')
chart.set_options(labels=list(df_year['release_year']), inner_radius=0.8)
chart.add_series(list(df_year['Count']))
chart.render_notebook()
条形图代码
from cutecharts.faker import Faker
chart = ctc.Bar('Top Movie Geners', width='600px', height='200px')
chart.set_options(labels=list(df_genre_movies['Drama'][:7]),
x_label='Drama',
y_label='Count',
colors=Faker.colors
)
chart.add_series('Geners',list(df_genre_movies['Count'][:7]))
chart.render_notebook()
绘制雷达图
data = {'Day': ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'],
'This week': [12, 10, 9, 9, 10, 3, 3],
'Last week': [15, 12, 8, 9, 11, 4, 3]
}
df_coffee = pd.DataFrame(data, columns = ['Day', 'This week', 'Last week'])
相关推荐
- Alist 玩家请进:一键部署全新分支 Openlist,看看香不香!
-
Openlist(其前身是鼎鼎大名的Alist)是一款功能强大的开源文件列表程序。它能像“万能钥匙”一样,解锁并聚合你散落在各处的云盘资源——无论是阿里云盘、百度网盘、GoogleDrive还是...
- 白嫖SSL证书还自动续签?这个开源工具让我告别手动部署
-
你还在手动部署SSL证书?你是不是也遇到过这些问题:每3个月续一次Let'sEncrypt证书,忘了就翻车;手动配置Nginx,重启服务,搞一次SSL得花一下午;付费证书太贵,...
- Docker Compose:让多容器应用一键起飞
-
CDockerCompose:让多容器应用一键起飞"曾经我也是一个手动启动容器的少年,直到我的膝盖中了一箭。"——某位忘记--link参数的运维工程师引言:容器化的烦恼与...
- 申请免费的SSL证书,到期一键续签
-
大家好,我是小悟。最近帮朋友配置网站HTTPS时发现,还有人对宝塔面板的SSL证书功能还不太熟悉。其实宝塔早就内置了免费的Let'sEncrypt证书申请和一键续签功能,操作简单到连新手都能...
- 飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
前面分享了两期TVGate:Q大的转发代理工具TVGate升级了,操作更便捷,增加了新的功能跨平台内网转发神器TVGate部署与使用初体验现在项目已经开源,并支持Docker部署,本文介绍如何通...
- Docker Compose 编排实战:一键部署多容器应用!
-
当项目变得越来越复杂,一个服务已经无法满足需求时,你可能需要同时部署数据库、后端服务、前端网页、缓存组件……这时,如果还一个一个手动dockerrun,简直是灾难这就是DockerCompo...
- 深度测评:Vue、React 一键部署的神器 PinMe
-
不知道大家有没有这种崩溃瞬间:领导突然要看项目Demo,客户临时要体验新功能,自己写的小案例想发朋友圈;找运维?排期?还要走工单;自己买服务器?域名、SSL、Nginx、防火墙;本地起服务?断电、关...
- 超简单!一键启动多容器,解锁 Docker Compose 极速编排秘籍
-
想要用最简单的方式在本地复刻一套完整的微服务环境?只需一个docker-compose.yml文件,你就能一键拉起N个容器,自动组网、挂载存储、环境隔离,全程无痛!下面这份终极指南,教你如何用...
- 日志文件转运工具Filebeat笔记_日志转发工具
-
一、概述与简介Filebeat是一个日志文件转运工具,在服务器上以轻量级代理的形式安装客户端后,Filebeat会监控日志目录或者指定的日志文件,追踪读取这些文件(追踪文件的变化,不停的读),并将来自...
- K8s 日志高效查看神器,提升运维效率10倍!
-
通常情况下,在部署了K8S服务之后,为了更好地监控服务的运行情况,都会接入对应的日志系统来进行检测和分析,比如常见的Filebeat+ElasticSearch+Kibana这一套组合...
- 如何给网站添加 https_如何给网站添加证书
-
一、简介相信大家都知道https是更加安全的,特别是一些网站,有https的网站更能够让用户信任访问接下来以我的个人网站五岁小孩为例子,带大家一起从0到1配置网站https本次配置的...
- 10个Linux文件内容查看命令的实用示例
-
Linux文件内容查看命令30个实用示例详细介绍了10个Linux文件内容查看命令的30个实用示例,涵盖了从基本文本查看、分页浏览到二进制文件分析的各个方面。掌握这些命令帮助您:高效查看各种文本文件内...
- 第13章 工程化实践_第13章 工程化实践课
-
13.1ESLint+Prettier代码规范统一代码风格配置//.eslintrc.jsmodule.exports={root:true,env:{node...
- 龙建股份:工程项目中标_龙建股份有限公司招聘网
-
404NotFoundnginx/1.6.1【公告简述】2016年9月8日公告,公司于2016年9月6日收到苏丹共和国(简称“北苏丹”)喀土穆州基础设施与运输部公路、桥梁和排水公司出具的中标通知书...
- 福田汽车:获得政府补助_福田 补贴
-
404NotFoundnginx/1.6.1【公告简述】2016年9月1日公告,自2016年8月17日至今,公司共收到产业发展补助、支持资金等与收益相关的政府补助4笔,共计5429.08万元(不含...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)