Python可视化Seaborn库详解——绘图方法
off999 2024-09-26 16:06 39 浏览 0 评论
在《Python可视化Seaborn库详解——绘图设置 》一文中,我们介绍了Seaborn库的绘图参数设置,本文我们将介绍具体的绘图方法。
其实虽然Seaborn库看着绘图函数多,但有几个函数的泛化性非常强,通过参数的设置是可以绘出多种图形的。为了便于掌握这些函数,本文会对这些方法进行归纳整理,力争做到提纲挈领的目的。
绘图方法分类
结合图形的性质,将常规的可视化图形分为了三类。
其中,线性关系所涉及到的是折线图和散点图,这两类图形在日常运用中非常常见;分类关系主要是描述不同维度下数据的统计结果,如条形图、箱图等;组合关系就类似于高级程序语言,它是由不同的基础图形组合而来的。
下面我们将一一介绍这些绘图方法。
线性关系可视化
我们用泰坦尼克号数据作为案例,首先进行数据准备。
import seaborn as sns
import pandas as pd
import numpy as np
data_raw=pd.read_csv("数据源/Titanic/train.csv")
df=data_raw.copy()
df.columns=[x.lower() for x in df.columns]- relplot
relplot函数和待会要介绍的catplot函数一样,均是属于一般型方法,它通过kind参数可分别作折线图和散点图,而且也可通过col和row参数进行分面。另外,该函数要求的数据格式必须是DataFrame。下图为该函数的绘图。
sns.relplot(x="passengerid",y="age",col="pclass",hue=None,
row=None,kind='scatter',data=df)
#kind为line,scatter;col表示按照该列进行分列绘图
#下面是具体的折线图和散点图函数,但这两种方法均不能进行分面
sns.lineplot(x="passengerid",y="age",data=df)
sns.scatterplot(x="passengerid",y="age",data=df)分类关系可视化
分类关系有两个一般性绘图方法:catplot和distplot。
- catplot
该函数可以绘制八种分类图,并可以进行分面。每种分类图也有相应的函数,可以进行更细致的参数设置,但均不能进行分面。
sns.catplot(x="survived",y="age",hue=None,row=None,col=None,
data=df,kind=j,ax=axes[i])
#hue对X轴进行二次分组,row按行分面,row按列分面,kind控制图形种类,
#有strip,swarm,box,violin,boxen,point,bar,count,strip为默认值
fig,axes=plt.subplots(3,3,figsize=(30,24))
ax=axes.flatten()
sns.stripplot(x="survived",y="age",data=df,ax=ax[0]) #条形散点图
sns.swarmplot(x="survived",y="age",data=df,ax=ax[1]) #避免散点重叠的条形散点图
sns.boxplot(x="survived",y="age",data=df,ax=ax[2]) #箱线图
sns.countplot(x="survived",data=df,ax=ax[3]) #统计图
sns.barplot(x="survived",y="age",data=df,ax=ax[4]) #条形图
sns.violinplot(x="survived",y="age",data=df,ax=ax[5]) #小提琴图
sns.boxenplot(x="survived",y="age",data=df,ax=ax[6]) #增强箱图
sns.pointplot(x="survived",y="age",data=df,ax=ax[7]) #点图上图为八种不同的分类图。
- distplot
直方图是较为特殊的分类关系图,虽然它属于分布函数,但也可视为一种分类。该函数通过hist和kde参数可控制绘制的图是直方图还是密度图,或是二者的结合。
fig,axes=plt.subplots(1,2,figsize=(12,5))
sns.distplot(df["age"],bins=[0,20,40,60,80,100],hist=True,kde=False,ax=axes[0])
sns.distplot(df["age"],bins=[0,20,40,60,80,100],hist=False,kde=True,ax=axes[1])
sns.kdeplot(df["age"],shade=True,vertical=False)
#核密度曲线组合关系可视化
组合关系包含的都是一些较为复杂的图,本文介绍三种。
- pairplot
该函数主要描述数据变量两两之间的关系图,默认都是散点图。
sns.heatmap(data=df[["age","sex","pclass","fare"]].corr(),linecolor="white",annot=True,linewidths=0.1,cmap='YlGnBu')
#cmap即colormap plt的颜色对象,annot系数值是否显示,
#矩阵数据集,行为矩阵的列名称,列为矩阵的行索引,如果是dataframe,则行为行索引- heatmap
热力图是一款非常热门的图形,通过颜色来反映数据之间的关系。
sns.heatmap(data=df[["age","sex","pclass","fare"]].corr(),linecolor="white",
annot=True,linewidths=0.1)
#annot系数值是否显示
#data最后是矩阵数据集,图形的行为矩阵的列,列为矩阵的行索引,如果是dataframe,则行为行索引- factorplot与FacetGrid
这是两个分面函数,分面的意思就是在一张画布中画多个图形。
sns.factorplot(x="survived", y="age",row="sex",col="pclass",
data=df, kind="strip")
#多面板绘图g=sns.FacetGrid(data=df,row="sex",col="pclass") #先画出轮廓
g.map(sns.stripplot,"survived","age") #进行补充其实这些分面图形通过catplot方面也是可以实现的。
sns.catplot(x="survived",y="age",col="pclass",hue=None,
row="sex",kind='strip',data=df)结语
将这些方法进行归类后就会发现,熟记并掌握这些函数变得容易多了。其实,可视化的原理并不复杂,复杂的只是绘图细节部分。因为每种组成部分都有众多的参数,参数还有不同的取值。
当然了,常规的可视化需求我们采用默认设置就足够了!
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
慕ke 前端工程师2024「完整」
-
失业程序员复习python笔记——条件与循环
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
