Python可视化Seaborn库详解——绘图方法
off999 2024-09-26 16:06 17 浏览 0 评论
在《Python可视化Seaborn库详解——绘图设置 》一文中,我们介绍了Seaborn库的绘图参数设置,本文我们将介绍具体的绘图方法。
其实虽然Seaborn库看着绘图函数多,但有几个函数的泛化性非常强,通过参数的设置是可以绘出多种图形的。为了便于掌握这些函数,本文会对这些方法进行归纳整理,力争做到提纲挈领的目的。
绘图方法分类
结合图形的性质,将常规的可视化图形分为了三类。
其中,线性关系所涉及到的是折线图和散点图,这两类图形在日常运用中非常常见;分类关系主要是描述不同维度下数据的统计结果,如条形图、箱图等;组合关系就类似于高级程序语言,它是由不同的基础图形组合而来的。
下面我们将一一介绍这些绘图方法。
线性关系可视化
我们用泰坦尼克号数据作为案例,首先进行数据准备。
import seaborn as sns
import pandas as pd
import numpy as np
data_raw=pd.read_csv("数据源/Titanic/train.csv")
df=data_raw.copy()
df.columns=[x.lower() for x in df.columns]
- relplot
relplot函数和待会要介绍的catplot函数一样,均是属于一般型方法,它通过kind参数可分别作折线图和散点图,而且也可通过col和row参数进行分面。另外,该函数要求的数据格式必须是DataFrame。下图为该函数的绘图。
sns.relplot(x="passengerid",y="age",col="pclass",hue=None,
row=None,kind='scatter',data=df)
#kind为line,scatter;col表示按照该列进行分列绘图
#下面是具体的折线图和散点图函数,但这两种方法均不能进行分面
sns.lineplot(x="passengerid",y="age",data=df)
sns.scatterplot(x="passengerid",y="age",data=df)
分类关系可视化
分类关系有两个一般性绘图方法:catplot和distplot。
- catplot
该函数可以绘制八种分类图,并可以进行分面。每种分类图也有相应的函数,可以进行更细致的参数设置,但均不能进行分面。
sns.catplot(x="survived",y="age",hue=None,row=None,col=None,
data=df,kind=j,ax=axes[i])
#hue对X轴进行二次分组,row按行分面,row按列分面,kind控制图形种类,
#有strip,swarm,box,violin,boxen,point,bar,count,strip为默认值
fig,axes=plt.subplots(3,3,figsize=(30,24))
ax=axes.flatten()
sns.stripplot(x="survived",y="age",data=df,ax=ax[0]) #条形散点图
sns.swarmplot(x="survived",y="age",data=df,ax=ax[1]) #避免散点重叠的条形散点图
sns.boxplot(x="survived",y="age",data=df,ax=ax[2]) #箱线图
sns.countplot(x="survived",data=df,ax=ax[3]) #统计图
sns.barplot(x="survived",y="age",data=df,ax=ax[4]) #条形图
sns.violinplot(x="survived",y="age",data=df,ax=ax[5]) #小提琴图
sns.boxenplot(x="survived",y="age",data=df,ax=ax[6]) #增强箱图
sns.pointplot(x="survived",y="age",data=df,ax=ax[7]) #点图
上图为八种不同的分类图。
- distplot
直方图是较为特殊的分类关系图,虽然它属于分布函数,但也可视为一种分类。该函数通过hist和kde参数可控制绘制的图是直方图还是密度图,或是二者的结合。
fig,axes=plt.subplots(1,2,figsize=(12,5))
sns.distplot(df["age"],bins=[0,20,40,60,80,100],hist=True,kde=False,ax=axes[0])
sns.distplot(df["age"],bins=[0,20,40,60,80,100],hist=False,kde=True,ax=axes[1])
sns.kdeplot(df["age"],shade=True,vertical=False)
#核密度曲线
组合关系可视化
组合关系包含的都是一些较为复杂的图,本文介绍三种。
- pairplot
该函数主要描述数据变量两两之间的关系图,默认都是散点图。
sns.heatmap(data=df[["age","sex","pclass","fare"]].corr(),linecolor="white",annot=True,linewidths=0.1,cmap='YlGnBu')
#cmap即colormap plt的颜色对象,annot系数值是否显示,
#矩阵数据集,行为矩阵的列名称,列为矩阵的行索引,如果是dataframe,则行为行索引
- heatmap
热力图是一款非常热门的图形,通过颜色来反映数据之间的关系。
sns.heatmap(data=df[["age","sex","pclass","fare"]].corr(),linecolor="white",
annot=True,linewidths=0.1)
#annot系数值是否显示
#data最后是矩阵数据集,图形的行为矩阵的列,列为矩阵的行索引,如果是dataframe,则行为行索引
- factorplot与FacetGrid
这是两个分面函数,分面的意思就是在一张画布中画多个图形。
sns.factorplot(x="survived", y="age",row="sex",col="pclass",
data=df, kind="strip")
#多面板绘图
g=sns.FacetGrid(data=df,row="sex",col="pclass") #先画出轮廓
g.map(sns.stripplot,"survived","age") #进行补充
其实这些分面图形通过catplot方面也是可以实现的。
sns.catplot(x="survived",y="age",col="pclass",hue=None,
row="sex",kind='strip',data=df)
结语
将这些方法进行归类后就会发现,熟记并掌握这些函数变得容易多了。其实,可视化的原理并不复杂,复杂的只是绘图细节部分。因为每种组成部分都有众多的参数,参数还有不同的取值。
当然了,常规的可视化需求我们采用默认设置就足够了!
相关推荐
- 每天一个 Python 库:datetime 模块全攻略,时间操作太丝滑!
-
在日常开发中,时间处理是绕不开的一块,比如:生成时间戳比较两个时间差转换为可读格式接口传参/前端展示/日志记录今天我们就用一个案例+代码+思维导图,带你完全搞定datetime模块的用法!...
- 字节跳动!2023全套Python入门笔记合集
-
学完python出来,已经工作3年啦,最近有很多小伙伴问我,学习python有什么用其实能做的有很多可以提高工作效率增强逻辑思维还能做爬虫网站数据分析等等!!最近也是整理了很多适合零基...
- 为什么你觉得Matplotlib用起来困难?因为你还没看过这个思维导图
-
前言Matplotlib是一个流行的Python库,可以很容易地用于创建数据可视化。然而,设置数据、参数、图形和绘图在每次执行新项目时都可能变得非常混乱和繁琐。而且由于应用不同,我们不知道选择哪一个图...
- Python新手必看!30分钟搞懂break/continue(附5个实战案例)
-
一、跳转语句的使命当程序需要提前结束循环或跳过特定迭代时,break和continue就是你的代码急刹按钮和跳步指令。就像在迷宫探险中:break=发现出口立即离开continue=跳过陷阱继续前进二...
- 刘心向学(24)Python中的数据类(python中5种简单的数据类型)
-
分享兴趣,传播快乐,增长见闻,留下美好!亲爱的您,这里是LearningYard新学苑。今天小编为大家带来文章“刘心向学(24)Python中的数据类”欢迎您的访问。Shareinterest,...
- 刘心向学(25)Python中的虚拟环境(python虚拟环境安装和配置)
-
分享兴趣,传播快乐,增长见闻,留下美好!亲爱的您,这里是LearningYard新学苑。今天小编为大家带来文章“刘心向学(25)Python中的虚拟环境”欢迎您的访问。Shareinte...
- 栋察宇宙(八):Python 中的 wordcloud 库学习介绍
-
分享乐趣,传播快乐,增长见识,留下美好。亲爱的您,这里是LearingYard学苑!今天小编为大家带来“Python中的wordcloud库学习介绍”欢迎您的访问!Sharethefun,...
- AI在用|ChatGPT、Claude 3助攻,1分钟GET高颜值思维导图
-
机器之能报道编辑:Cardinal以大模型、AIGC为代表的人工智能浪潮已经在悄然改变着我们生活及工作方式,但绝大部分人依然不知道该如何使用。因此,我们推出了「AI在用」专栏,通过直观、有趣且简洁的人...
- 使用DeepSeek + Python开发AI思维导图应用,非常强!
-
最近基于Deepseek+PythonWeb技术开发了一个AI对话自动生成思维导图的应用,用来展示下如何基于低门槛的Python相关技术栈,高效结合deepseek实现从应用场景到实际应用的快速落地...
- 10幅思维导图告诉你 - Python 核心知识体系
-
首先,按顺序依次展示了以下内容的一系列思维导图:基础知识,数据类型(数字,字符串,列表,元组,字典,集合),条件&循环,文件对象,错误&异常,函数,模块,面向对象编程;接着,结合这些思维导图主要参考的...
- Python基础核心思维导图,让你轻松入门
-
Python基础核心思维导图【高清图文末获取】学习路线图就给大家看到这里了,需要的小伙伴下方获取获取方式看下方图片...
- Python基础核心思维导图,学会事半功倍
-
Python基础核心思维导图【高清图文末获取】学习路线图就给大家看到这里了,需要的小伙伴下方获取获取方式看下方图片...
- 硬核!288页Python核心知识笔记(附思维导图,建议收藏)
-
今天就给大家分享一份288页Python核心知识笔记,相较于部分朋友乱糟糟的笔记,这份笔记更够系统地总结相关知识,巩固Python知识体系。文末获取完整版PDF该笔记学习思维导图:目录内容展示【领取方...
- Python学习知识思维导图(高效学习)
-
Python学习知识思维导图python基础知识python数据类型条件循环列表元组字典集合字符串序列函数面向对象编程模块错误异常文件对象#python##python自学##编程#...
- 别找了!288页Python核心知识笔记(附思维导图,建议收藏)
-
今天就给大家分享一份288页Python核心知识笔记,相较于部分朋友乱糟糟的笔记,这份笔记更够系统地总结相关知识,巩固Python知识体系。文末获取完整版PDF该笔记学习思维导图:目录内容展示【领取方...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 每天一个 Python 库:datetime 模块全攻略,时间操作太丝滑!
- 字节跳动!2023全套Python入门笔记合集
- 为什么你觉得Matplotlib用起来困难?因为你还没看过这个思维导图
- Python新手必看!30分钟搞懂break/continue(附5个实战案例)
- 刘心向学(24)Python中的数据类(python中5种简单的数据类型)
- 刘心向学(25)Python中的虚拟环境(python虚拟环境安装和配置)
- 栋察宇宙(八):Python 中的 wordcloud 库学习介绍
- AI在用|ChatGPT、Claude 3助攻,1分钟GET高颜值思维导图
- 使用DeepSeek + Python开发AI思维导图应用,非常强!
- 10幅思维导图告诉你 - Python 核心知识体系
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)