百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

打包python库(python 打包whl)

off999 2024-10-01 14:06 18 浏览 0 评论

我认为应该重新定义打包的最优方法,现在有许多好的工具,要么不用,要么用得不多。最好重新评估最优方法。

这里假设包将在多个Python版本上进行测试,其中包含不同的依赖版本、设置等的组合。

打包时我喜欢遵循的几个原则:

  • 如果有工具可以帮助你进行测试,使用它。如果你可以使用py.test或者nose,不要浪费时间来构建自定义的测试程序。它们带有大型生态系统插件,可以改进你的测试。

  • 在可能的情况下,尽早预防问题。这主要是严格的测试和详尽的测试。防止常见错误的设计。

  • 收集所有覆盖数据。记录。识别回归。

  • 测试所有可能的配置。

结构

这是相当重要的,一切都围绕着这个。我喜欢这种结构:

src目录是一种较好的方法,因为:

  • 你不得不编写和用户一样的导入语句。当前目录隐式包含在sys.path中;但是当从site-packegs安装和导入时不是这样。用户永远不会有与你相同的当前工作目录。

这种限制在测试和打包中都有有益的:您将被迫测试已安装的代码(因为你也需要在virtualenv中安装一遍才能使用)。这将确保部署的代码工作正常(打包正确)——否则你的测试将失败。这让你不会发布那种完全不能用的软件包。您将被迫安装发布。如果你曾经在PyPI上上传一个带有缺失模块或错误依赖项的发行版,那是因为你没有测试安装。只是能够成功地建造sdist,不保证它会真的安装成功。

  • 它阻止你轻松导入setup.py脚本中的代码。这是一种不好的做法,因为如果导入主包或模块触发对依赖项的额外导入(可能不可用),它总是会放大。最好不要让它成为可能。
  • 简单的打包代码和清单。它使清单写起来非常简单(如:你打包有一个有模板或静态文件的Django应用程序)。同样,对于拥有多个包的大型库来说,多个包之间也不会混淆。明确被打包代码和打包代码的分离。不建立src目录而编写MANIFEST.in颇为不易。如果你的manifest写得不正确,测试将失败。而使用src目录就会容易很多:只需在MANIFEST.in中添加graft src。
    发布坏掉的的包给PyPI是不好玩的。
  • 没有src目录,你会得到乱七八糟的可编辑安装(“setup.py develop"或者"pip install -e")。没有分离(没有src目录)将迫使setuptools将项目的根放在sys.path上——其中包含所有无用的东西(例如:setup.py和其它测试或配置脚本将无意中变得可导入)。
  • 还有更好的工具。你不需要处理安装包就可以运行测试了。只使用tox——它将自动为你安装包,零摩擦,零摩擦。
  • 用户错误的可能更少。
  • 更少的工具将代码与非代码混合的可能。

有的人说,扁平胜于嵌套,但这种思想并不适用于数据。毕竟,文件系统就是数据,而数据重要的是内聚性以及结构良好。你将注意到,我没有在安装的包中包含测试。因为:

  • 模块发现工具将使你的测试模块失败。测试模块中经常发生奇怪的事情。内置help进行模块发现。例如:
  • 测试通常需要额外的依赖项才能运行,因此它们本身并没用——你不能直接运行它们。
  • 测试关注的是开发,而不是使用。
  • 非常不可能的是库的用户而不是库的开发人员运行测试。例如:在测试应用程序时,不需要运行Django的测试——Django已经测试过。

替代品

src目录中结构更少,几个例子:

这两种结构之所以流行,是因为几年前打包存在许多问题,所以安装包只是为了测试它是不可行的。人们仍然推荐它们,即使它是基于旧的和过时的设定。

大多数项目都错误地使用了它们,因为除了Twisted"s trial之外,所有测试运行程序都有不正确的当前工作目录的默认值——如果不测试已安装的代码,那么你将测试错误的代码。trial通过将工作目录更改为临时目录来做正确的事情,但是大多数项目不使用trial。

安装脚本

遗憾的是,目前的打包工具存在很多缺陷。setup.by脚本应该尽可能简单:

这有什么特别之处:

  • 没有exec或者import技巧。
  • 包括src:packages或者root-level模块中的所有内容。
  • 显式编码。

运行测试

再次,似乎人们喜欢运行python setup.py test来运行包测试。我认为这不值得做——setup.py test是一个复制CPAN测试系统的失败的实验。Python没有通用的测试结果协议,所以没有通用的测试命令。至少现在没有——我们需要一些人来建立使这一切有价值的规范和服务,并支持他们。我认为,一般来说,认识到失败的地方,并在必要时回到起点很重要——绝对没有任何服务或工具以带来附加值的方式使用setup.py test命令。这里肯定出了问题。

我相信现在对PyPI来说做任何事情都已经太晚了,Travis已经是一个稳固、可靠、极其灵活和免费的替代品。它与Github集成得非常好——将为每个Pull Request自动运行构建。

测试本地tox是运行所有可能的测试配置的一种非常好的方法(每个配置将是一个tox环境)。我喜欢用这些额外的环境把测试组织成矩阵:

  • check——检查包元数据(例如:如果你的长文本中的重构文本是有效的)

  • clean——净覆盖率

  • report——为所有积累的数据做覆盖报告

  • docs——构建sphinx文档

我也喜欢有或没有覆盖测量的环境,并一直运行它们。竟态条件通常对性能敏感,如果使用覆盖率测量运行所有内容,则不太可能捕获它们。

测试矩阵

根据依赖性,你通常会得到大量的Python版本、依赖版本和不同设置的组合。通常人们只是硬编码tox.ini或仅是.travis.yml中的一切。它们最终得到不完整的本地测试或Travis中连续运行的测试配置。我试过了,不喜欢。我试过复制tox.ini和.travis.yml中的环境。还是不喜欢它。由于没有现成的可用选项来生成配置,因此我实现了一个使用模板来生成tox.ini和.travis.ym的生成器脚本。最好的方式是DRY,你可以轻松地跳过特定配置上的运行测试(例如:在Python 3上跳过Django 1.4),并且改变的工作就更少了。基本要素(完整的代码):

setup.cfg

生成器脚本使用配置文件(setup.cfg为方便起见):

ci/bootstrap.py

这是生成器脚本。每当您想要重新配置配置时,就运行此操作。

ci/templates/.travis.yml

这里面有很多吸引人的东西:非常有用libSegFault.so trick。

它基本上只运行tox。

ci/templates/tox.ini

ci/templates/appveyor.ini

对于Windows友好的项目:

如果你有足够的耐心阅读,你会注意到的:

  • Travis配置为矩阵中的每个项目使用tox。这使得Travis中的测试与本地测试一致。

  • tox的环境顺序是clean,check,2.6-1.3,2.6-1.4,……,report。

  • 具有覆盖率测量的环境无需安装即可运行代码(usedevelop = true),以便覆盖率可以在最后组合所有测量。

  • 没有覆盖的环境将持续存在并安装到virtualenv中(tox的默认行为),以便尽早发现打包问题。

  • report环境将最终的所有运行合并为单个报告。

拥有tox.ini中完整的环境清单是一个巨大的优势:

  • 你在本地并行运行所有的东西(如果你的测试不需要严格的隔离)和detox。如果你想使用drone.io而不是Travis,你仍然可以并行运行所有的东西。

  • 你可以为本地的一切(将所有环境的覆盖测量合并为单个环境)测量累积的覆盖率。

测试覆盖率

Coveralls——一种跟踪覆盖时间和多个构建的好方法。它会自动添加关于Gitbub Pull Request覆盖率变化的注释。

TL;DR

  • 将代码放入src。

  • 使用tox和detox。

  • 有无覆盖测量测试。

  • 为tox.ini和.travis.ini使用生成器脚本。

  • 在Travis中用tox运行测试以保持与本地测试的一致性。

太复杂?只需使用Python包模板。

不够说服力?阅读Hynek的文章关于scr结构。

英文原文:https://qiniumedia.freelycode.com/vcdn/1/%E4%BC%98%E8%B4%A8%E6%96%87%E7%AB%A0%E9%95%BF%E5%9B%BE2/package_a_python_lib.pdf
译者:张新英

相关推荐

python gui编程框架推荐以及介绍(python gui开发)

Python的GUI编程框架有很多,这里为您推荐几个常用且功能强大的框架:Tkinter:Tkinter是Python的标准GUI库,它是Python内置的模块,无需额外安装。它使用简单,功能较为基础...

python自动化框架学习-pyautogui(python接口自动化框架)

一、适用平台:PC(windows和mac均可用)二、下载安装:推荐使用命令行下载(因为会自动安装依赖库):pipinstallPyAutoGUI1该框架的依赖库还是蛮多的,第一次用的同学耐心等...

Python 失宠!Hugging Face 用 Rust 新写了一个 ML框架,现已低调开源

大数据文摘受权转载自AI前线整理|褚杏娟近期,HuggingFace低调开源了一个重磅ML框架:Candle。Candle一改机器学习惯用Python的做法,而是Rust编写,重...

Flask轻量级框架 web开发原来可以这么可爱呀~(建议收藏)

Flask轻量级框架web开发原来可以这么可爱呀大家好呀~今天让我们一起来学习一个超级可爱又实用的PythonWeb框架——Flask!作为一个轻量级的Web框架,Flask就像是一个小巧精致的工...

Python3使用diagrams生成架构图(python架构设计)

目录技术背景diagrams的安装基础逻辑关系图组件簇的定义总结概要参考链接技术背景对于一个架构师或者任何一个软件工程师而言,绘制架构图都是一个比较值得学习的技能。这就像我们学习的时候整理的一些Xmi...

几个高性能Python网络框架,高效实现网络应用

Python作为一种广泛使用的编程语言,其简洁易读的语法和强大的生态系统,使得它在Web开发领域占据重要位置。高性能的网络框架是构建高效网络应用的关键因素之一。本文将介绍几个高性能的Python网络框...

Web开发人员的十佳Python框架(python最好的web框架)

Python是一种面向对象、解释型计算机程序设计语言。除了语言本身的设计目的之外,Python的标准库也是值得大家称赞的,同时Python还自带服务器。其它方面,Python拥有足够多的免费数据函数库...

Diagram as Code:用python代码生成架构图

工作中常需要画系统架构图,通常的方法是通过visio、processon、draw.io之类的软件,但是今天介绍的这个软件Diagrams,可以通过写Python代码完成架构图绘制,确实很co...

分享一个2022年火遍全网的Python框架

作者:俊欣来源:关于数据分析与可视化最近Python圈子当中出来一个非常火爆的框架PyScript,该框架可以在浏览器中运行Python程序,只需要在HTML程序中添加一些Python代码即可实现。该...

10个用于Web开发的最好 Python 框架

Python是一门动态、面向对象语言。其最初就是作为一门面向对象语言设计的,并且在后期又加入了一些更高级的特性。除了语言本身的设计目的之外,Python标准库也是值得大家称赞的,Python甚至还...

使用 Python 将 Google 表格变成您自己的数据库

图片来自Shutterstock,获得FrankAndrade的许可您知道Google表格可以用作轻量级数据库吗?GoogleSheets是一个基于云的电子表格应用程序,可以像大多数数据库管...

牛掰!用Python处理Excel的14个常用操作总结!

自从学了Python后就逼迫用Python来处理Excel,所有操作用Python实现。目的是巩固Python,与增强数据处理能力。这也是我写这篇文章的初衷。废话不说了,直接进入正题。数据是网上找到的...

将python打包成exe的方式(将python文件打包成exe可运行文件)

客户端应用程序往往需要运行Python脚本,这对于那些不熟悉Python语言的用户来说可能会带来一定的困扰。幸运的是,Python拥有一些第三方模块,可以将这些脚本转换成可执行的.exe...

对比Excel学Python第1练:既有Excel,何用Python?

背景之前发的文章开头都是“Python数据分析……”,使得很多伙伴以为我是专门分享Python的,但我的本意并非如此,我的重点还是会放到“数据分析”上,毕竟,Python只是一种工具而已。现在网上可以...

高效办公:Python处理excel文件,摆脱无效办公

一、Python处理excel文件1.两个头文件importxlrdimportxlwt其中xlrd模块实现对excel文件内容读取,xlwt模块实现对excel文件的写入。2.读取exce...

取消回复欢迎 发表评论: