百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python 中让你相见恨晚的 20 个"骚操作"

off999 2024-10-01 14:07 30 浏览 0 评论

今天和大家分享二十个 Python 编程中新手必会的“骚操作”,使用的频率超高!记得点赞,收藏哦!话不多说,进入正题!

1.列表推导式

使用列表推导式创建一个列表。

私信小编01即可获取大量python学习资源

>>> [n*10 for n in range(5)]
[0, 10, 20, 30, 40]

2.交换变量

一行代码交换两个变量的值。

>>> m, n = 1, 2
>>> m, n = n, m
>>> m
2
>>> n
1

3.连续比较

链式比较操作符。

>>> m, n = 3, 'c'
>>> 1 < m < 5
True
>>> 'd' < n < 'f'
False

4.序列切片

通过切片快速获取序列片段。

>>> lst = [1, 2, 3, 4, 5]
>>> lst[:3]  # 取前三个数
[1, 2, 3]
>>> lst[::-1]  # 逆序
[5, 4, 3, 2, 1]
>>> lst[::2]  # 步长为2
[1, 3, 5]
>>> lst[::-2]  # 逆序步长为2
[5, 3, 1]

5.切片快速增删序列

通过切片替换序列片段的值。

>>> lst = [1, 2, 3, 4, 5]
>>> lst[1:3] = []
>>> lst
[1, 4, 5]
>>> lst[1:3] = ['a', 'b', 'c', 'd']
>>> lst
[1, 'a', 'b', 'c', 'd']

6.%timeit 计算运行时间

计算 10000 次列表推导式创建列表所用时间。

%timeit -n 10000 [n for n in range(5)]

# 2.41 μs ± 511 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

7.三元表达式

获取 m,n 中较大的值。

>>> m = 4
>>> n = 2
>>> if m > n:
        print('m')
else:
        print('n')

m
>>> 'm' if m > n else 'n'
'm'

还有一种比较少见的写法。

>>> m = 4
>>> n = 2
>>> ("n", "m")[m > n]
'm'

格式: (<on_true>, <on_false>)[condition]

8.解包(unpack)

可迭代对象都支持解包。

>>> a, b, *c = [1, 2, 3, 4]
>>> a
1
>>> b
2
>>> c
[3, 4]
>>> print(*range(3))
0 1 2

9.lambda 匿名函数

lambda 函数可以接收任意多个参数 (包括可选参数) ,返回单个表达式值。 lambda 函数不能包含命令,只能包含一个表达式。

>>> def func(x, y):
	return x * y

>>> func(2, 3)
6
>>> func = lambda x, y: x * y
>>> func(2, 3)
6

10.map 序列映射

对序列中每一个元素调用指定函数,返回迭代器。

>>> def func(x):
	      return x ** 2

>>> list(map(func, [1,2,3]))
[1, 4, 9]

使用 lambda 表达式。

>>> list(map(lambda x: x ** 2, [1, 2, 3]))
[1, 4, 9]

11.filter 过滤序列

过滤掉不符合条件的元素,返回迭代器。

>>> def func(x): 
	      return x % 3 == 0
  
>>> list(filter(func, [1, 2 ,3]))
[3]

使用 lambda 表达式。

>>> list(filter(lambda x: x % 3 == 0, [1, 2, 3]))
[3]

12.获取序列组合

获取两个序列每个元素两两组合的结果。

>>> list1 = ['a', 'b']
>>> list2 = ['1', '2']
>>> [(m, n) for m in list1 for n in list2]
[('a', '1'), ('a', '2'), ('b', '1'), ('b', '2')]
>>> from itertools import product
>>> list(product(list1, list2))
[('a', '1'), ('a', '2'), ('b', '1'), ('b', '2')]

13.随机选取序列元素

随机选取序列中的一个元素。

>>> from random import choice
>>> lst = [1, 2, 3, 4]
>>> choice(lst)
3

随机选取序列中的多个元素( 可重复 )。 k 值指定数量。

>>> from random import choices
>>> lst = [1, 2, 3, 4]
>>> choices(lst, k=3)
[4, 3, 4]

随机选取序列中的多个元素( 不重复 )。 k 值指定数量。

>>> from random import sample
>>> lst = [1, 2, 3, 4]
>>> sample(lst, k=3)
[4, 3, 2]

14.序列元素计数

统计序列每个元素出现的次数。

>>> from collections import Counter
>>> s = 'python+py'
>>> counter = Counter(s)
>>> counter
Counter({
 'p': 2, 'y': 2, 't': 1, 'h': 1, 'o': 1, 'n': 1, '+': 1})

返回的结果类似字典,可以使用字典的相关方法。

>>> counter.keys()
dict_keys(['p', 'y', 't', 'h', 'o', 'n', '+'])
>>> counter.values()
dict_values([2, 2, 1, 1, 1, 1, 1])
>>> counter.items()
dict_items([('p', 2), ('y', 2), ('t', 1), ('h', 1), ('o', 1), ('n', 1), ('+', 1)])

统计出现次数最多的两个元素。

>>> counter.most_common(2)
[('p', 2), ('y', 2)]

15.字典排序

字典按照键( key )降序排序。

>>> dic = {
 'd': 2, 'c': 1, 'a': 3, 'b': 4}
>>> sort_by_key = sorted(dic.items(), key=lambda x: x[0], reverse=False)
>>> {
 key: value for key, value in sort_by_key}
{
 'a': 3, 'b': 4, 'c': 1, 'd': 2}

字典按照值( value )降序排序。

>>> dic = {
 'd': 2, 'c': 1, 'a': 3, 'b': 4}
>>> sort_by_value = sorted(dic.items(), key=lambda x: x[1], reverse=False)
>>> {
 key: value for key, value in sort_by_value}
{
 'c': 1, 'd': 2, 'a': 3, 'b': 4}

16.字典合并

>>> dict1 = {
 'name': '静香', 'age': 18}
>>> dict2 = {
 'name': '静香', 'sex': 'female'}
  1. update() 更新字典。
>>> dict1.update(dict2)
>>> dict1
{
 'name': '静香', 'age': 18, 'sex': 'female'}
  1. 字典推导式
>>> {
 k: v for dic in [dict1, dict2] for k, v in dic.items()}
{
 'name': '静香', 'age': 18, 'sex': 'female'}
  1. 元素拼接
>>> dict(list(dict1.items()) + list(dict2.items()))
{
 'name': '静香', 'age': 18, 'sex': 'female'}
  1. chain() 可以将序列连接,返回可迭代对象。
from itertools import chain
>>> dict(chain(dict1.items(), dict2.items()))
{
 'name': '静香', 'age': 18, 'sex': 'female'}
  1. collections.ChainMap 可以将多个字典或映射,并将它们合并。
>>> from collections import ChainMap
>>> dict(ChainMap(dict2, dict1))
{
 'name': '静香', 'age': 18, 'sex': 'female'}
  1. Python3.5 以上的版本中,可以通过字典解包进行合并。
>>> {
 **dict1, **dict2}
{
 'name': '静香', 'age': 18, 'sex': 'female'}

17.zip 打包

zip() 将序列中对应的元素打包成一个个的元组,然后返回由这些元组组成的迭代器。

如果序列的元素个数不一致,则返回列表长度与最短的对象相同。

>>> list1 = [1, 2, 3]
>>> list2 = [4, 5, 6]
>>> list3 = ['a', 'b', 'c', 'd']
>>> res = zip(list1, list2)
>>> res
<zip object at 0x0000013C13F62200>
>>> list(res)
[(1, 4), (2, 5), (3, 6)]
>>> list(zip(list2, list3))
[(4, 'a'), (5, 'b'), (6, 'c')]

18.enumerate 遍历

enumerate 函数可以将可迭代对象组合成一个索引序列,这样遍历时就可以同时获取索引与对应的值。

>>> lst = ['a', 'b', 'c']
>>> for index, char in enumerate(lst):
	print(index, char)

	
0 a
1 b
2 c

19.any() & all()

any(iterable)

any

all(iterable)

all
>>> any('')
False
>>> any([])
False
>>> any([1, 0, ''])
True
>>> any([0, '', []])
False
>>> all([])
True
>>> all([1, 0, ''])
False
>>> all([1, 2, 3])
True

20.用 ** 代替 pow

求 x 的 y 次方,使用 ** 速度更快。

%timeit -n 10000 c = pow(2,10)
# 911 ns ± 107 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit -n 10000 c = 2 ** 10
# 131 ns ± 46.8 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

这就是今天要分享的内容,记得点赞哦~提前感谢

相关推荐

面试官:来,讲一下枚举类型在开发时中实际应用场景!

一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...

一日一技:11个基本Python技巧和窍门

1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...

Python Enum 技巧,让代码更简洁、更安全、更易维护

如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...

Python元组编程指导教程(python元组的概念)

1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...

你可能不知道的实用 Python 功能(python有哪些用)

1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...

Python 2至3.13新特性总结(python 3.10新特性)

以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...

Python中for循环访问索引值的方法

技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...

Python enumerate核心应用解析:索引遍历的高效实践方案

喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...

Python入门到脱坑经典案例—列表去重

列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...

Python枚举类工程实践:常量管理的标准化解决方案

本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...

让Python枚举更强大!教你玩转Enum扩展

为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...

Python枚举(Enum)技巧,你值得了解

枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...

78行Python代码帮你复现微信撤回消息!

来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...

登录人人都是产品经理即可获得以下权益

文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...

Python常用小知识-第二弹(python常用方法总结)

一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...

取消回复欢迎 发表评论: