百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python 中让你相见恨晚的 20 个"骚操作"

off999 2024-10-01 14:07 45 浏览 0 评论

今天和大家分享二十个 Python 编程中新手必会的“骚操作”,使用的频率超高!记得点赞,收藏哦!话不多说,进入正题!

1.列表推导式

使用列表推导式创建一个列表。

私信小编01即可获取大量python学习资源

>>> [n*10 for n in range(5)]
[0, 10, 20, 30, 40]

2.交换变量

一行代码交换两个变量的值。

>>> m, n = 1, 2
>>> m, n = n, m
>>> m
2
>>> n
1

3.连续比较

链式比较操作符。

>>> m, n = 3, 'c'
>>> 1 < m < 5
True
>>> 'd' < n < 'f'
False

4.序列切片

通过切片快速获取序列片段。

>>> lst = [1, 2, 3, 4, 5]
>>> lst[:3]  # 取前三个数
[1, 2, 3]
>>> lst[::-1]  # 逆序
[5, 4, 3, 2, 1]
>>> lst[::2]  # 步长为2
[1, 3, 5]
>>> lst[::-2]  # 逆序步长为2
[5, 3, 1]

5.切片快速增删序列

通过切片替换序列片段的值。

>>> lst = [1, 2, 3, 4, 5]
>>> lst[1:3] = []
>>> lst
[1, 4, 5]
>>> lst[1:3] = ['a', 'b', 'c', 'd']
>>> lst
[1, 'a', 'b', 'c', 'd']

6.%timeit 计算运行时间

计算 10000 次列表推导式创建列表所用时间。

%timeit -n 10000 [n for n in range(5)]

# 2.41 μs ± 511 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

7.三元表达式

获取 m,n 中较大的值。

>>> m = 4
>>> n = 2
>>> if m > n:
        print('m')
else:
        print('n')

m
>>> 'm' if m > n else 'n'
'm'

还有一种比较少见的写法。

>>> m = 4
>>> n = 2
>>> ("n", "m")[m > n]
'm'

格式: (<on_true>, <on_false>)[condition]

8.解包(unpack)

可迭代对象都支持解包。

>>> a, b, *c = [1, 2, 3, 4]
>>> a
1
>>> b
2
>>> c
[3, 4]
>>> print(*range(3))
0 1 2

9.lambda 匿名函数

lambda 函数可以接收任意多个参数 (包括可选参数) ,返回单个表达式值。 lambda 函数不能包含命令,只能包含一个表达式。

>>> def func(x, y):
	return x * y

>>> func(2, 3)
6
>>> func = lambda x, y: x * y
>>> func(2, 3)
6

10.map 序列映射

对序列中每一个元素调用指定函数,返回迭代器。

>>> def func(x):
	      return x ** 2

>>> list(map(func, [1,2,3]))
[1, 4, 9]

使用 lambda 表达式。

>>> list(map(lambda x: x ** 2, [1, 2, 3]))
[1, 4, 9]

11.filter 过滤序列

过滤掉不符合条件的元素,返回迭代器。

>>> def func(x): 
	      return x % 3 == 0
  
>>> list(filter(func, [1, 2 ,3]))
[3]

使用 lambda 表达式。

>>> list(filter(lambda x: x % 3 == 0, [1, 2, 3]))
[3]

12.获取序列组合

获取两个序列每个元素两两组合的结果。

>>> list1 = ['a', 'b']
>>> list2 = ['1', '2']
>>> [(m, n) for m in list1 for n in list2]
[('a', '1'), ('a', '2'), ('b', '1'), ('b', '2')]
>>> from itertools import product
>>> list(product(list1, list2))
[('a', '1'), ('a', '2'), ('b', '1'), ('b', '2')]

13.随机选取序列元素

随机选取序列中的一个元素。

>>> from random import choice
>>> lst = [1, 2, 3, 4]
>>> choice(lst)
3

随机选取序列中的多个元素( 可重复 )。 k 值指定数量。

>>> from random import choices
>>> lst = [1, 2, 3, 4]
>>> choices(lst, k=3)
[4, 3, 4]

随机选取序列中的多个元素( 不重复 )。 k 值指定数量。

>>> from random import sample
>>> lst = [1, 2, 3, 4]
>>> sample(lst, k=3)
[4, 3, 2]

14.序列元素计数

统计序列每个元素出现的次数。

>>> from collections import Counter
>>> s = 'python+py'
>>> counter = Counter(s)
>>> counter
Counter({
 'p': 2, 'y': 2, 't': 1, 'h': 1, 'o': 1, 'n': 1, '+': 1})

返回的结果类似字典,可以使用字典的相关方法。

>>> counter.keys()
dict_keys(['p', 'y', 't', 'h', 'o', 'n', '+'])
>>> counter.values()
dict_values([2, 2, 1, 1, 1, 1, 1])
>>> counter.items()
dict_items([('p', 2), ('y', 2), ('t', 1), ('h', 1), ('o', 1), ('n', 1), ('+', 1)])

统计出现次数最多的两个元素。

>>> counter.most_common(2)
[('p', 2), ('y', 2)]

15.字典排序

字典按照键( key )降序排序。

>>> dic = {
 'd': 2, 'c': 1, 'a': 3, 'b': 4}
>>> sort_by_key = sorted(dic.items(), key=lambda x: x[0], reverse=False)
>>> {
 key: value for key, value in sort_by_key}
{
 'a': 3, 'b': 4, 'c': 1, 'd': 2}

字典按照值( value )降序排序。

>>> dic = {
 'd': 2, 'c': 1, 'a': 3, 'b': 4}
>>> sort_by_value = sorted(dic.items(), key=lambda x: x[1], reverse=False)
>>> {
 key: value for key, value in sort_by_value}
{
 'c': 1, 'd': 2, 'a': 3, 'b': 4}

16.字典合并

>>> dict1 = {
 'name': '静香', 'age': 18}
>>> dict2 = {
 'name': '静香', 'sex': 'female'}
  1. update() 更新字典。
>>> dict1.update(dict2)
>>> dict1
{
 'name': '静香', 'age': 18, 'sex': 'female'}
  1. 字典推导式
>>> {
 k: v for dic in [dict1, dict2] for k, v in dic.items()}
{
 'name': '静香', 'age': 18, 'sex': 'female'}
  1. 元素拼接
>>> dict(list(dict1.items()) + list(dict2.items()))
{
 'name': '静香', 'age': 18, 'sex': 'female'}
  1. chain() 可以将序列连接,返回可迭代对象。
from itertools import chain
>>> dict(chain(dict1.items(), dict2.items()))
{
 'name': '静香', 'age': 18, 'sex': 'female'}
  1. collections.ChainMap 可以将多个字典或映射,并将它们合并。
>>> from collections import ChainMap
>>> dict(ChainMap(dict2, dict1))
{
 'name': '静香', 'age': 18, 'sex': 'female'}
  1. Python3.5 以上的版本中,可以通过字典解包进行合并。
>>> {
 **dict1, **dict2}
{
 'name': '静香', 'age': 18, 'sex': 'female'}

17.zip 打包

zip() 将序列中对应的元素打包成一个个的元组,然后返回由这些元组组成的迭代器。

如果序列的元素个数不一致,则返回列表长度与最短的对象相同。

>>> list1 = [1, 2, 3]
>>> list2 = [4, 5, 6]
>>> list3 = ['a', 'b', 'c', 'd']
>>> res = zip(list1, list2)
>>> res
<zip object at 0x0000013C13F62200>
>>> list(res)
[(1, 4), (2, 5), (3, 6)]
>>> list(zip(list2, list3))
[(4, 'a'), (5, 'b'), (6, 'c')]

18.enumerate 遍历

enumerate 函数可以将可迭代对象组合成一个索引序列,这样遍历时就可以同时获取索引与对应的值。

>>> lst = ['a', 'b', 'c']
>>> for index, char in enumerate(lst):
	print(index, char)

	
0 a
1 b
2 c

19.any() & all()

any(iterable)

any

all(iterable)

all
>>> any('')
False
>>> any([])
False
>>> any([1, 0, ''])
True
>>> any([0, '', []])
False
>>> all([])
True
>>> all([1, 0, ''])
False
>>> all([1, 2, 3])
True

20.用 ** 代替 pow

求 x 的 y 次方,使用 ** 速度更快。

%timeit -n 10000 c = pow(2,10)
# 911 ns ± 107 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit -n 10000 c = 2 ** 10
# 131 ns ± 46.8 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

这就是今天要分享的内容,记得点赞哦~提前感谢

相关推荐

阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?

TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...

高流量大并发Linux TCP性能调优_linux 高并发网络编程

其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...

性能测试100集(12)性能指标资源使用率

在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...

Linux 服务器常见的性能调优_linux高性能服务端编程

一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...

Nginx性能优化实战:手把手教你提升10倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...

高并发场景下,Spring Cloud Gateway如何抗住百万QPS?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...

Kubernetes 高并发处理实战(可落地案例 + 源码)

目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...

高并发场景下,Nginx如何扛住千万级请求?

Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...

Spring Boot+Vue全栈开发实战,中文版高清PDF资源

SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...

Docker-基础操作_docker基础实战教程二

一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...

你有空吗?跟我一起搭个服务器好不好?

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...

部署你自己的 SaaS_saas如何部署

部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...

Docker Compose_dockercompose安装

DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...

京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统

前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...

Kubernetes (k8s) 入门学习指南_k8s kubeproxy

Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...

取消回复欢迎 发表评论: