Python计算机视觉实战:用8大图像特效算法,制作专属图像滤镜
off999 2024-09-14 07:06 22 浏览 0 评论
写在前面
图像特效处理是基于图像像素数据特征,将原图像进行一定步骤的计算——例如像素作差、灰度变换、颜色通道融合等,从而达到期望的效果。图像特效处理是日常生活中应用非常广泛的一种计算机视觉应用,出现在各种美图软件中,这些精美滤镜背后的数学原理都是相通的,本文主要介绍八大基本图像特效算法,在这些算法基础上可以进行二次开发,生成更高级的滤镜。
本文采用面向对象设计,定义了一个图像处理类ImgProcess,使图像特效算法的应用更简洁,例如
import cv2
import numpy as np
process = ImgProcess('1.jpg')
glassImg = process.glass()
cv2.imshow("glass", glassImg)
cv2.waitKey(delay = 0)
就可以生成毛玻璃特效处理过的图片。这个类的构造函数为
class ImgProcess:
def __init__(self, img) -> None:
self.src = cv2.imread(img)
self.gray = cv2.cvtColor(self.src, cv2.COLOR_BGR2GRAY)
self.h, self.w = self.src.shape[:2]
读取的是图像的基本信息。本文把冰冰作为模特~
那么下面,正式开始各种算法的介绍吧~
1 毛玻璃特效
毛玻璃特效,是利用图像领域内随机一个像素点颜色代替当前像素,从而实现毛玻璃一般朦胧模糊的效果。
# 毛玻璃特效
def glass(self):
glassImg = np.zeros((self.h, self.w, 3), np.uint8)
for i in range(self.h - 6):
for j in range(self.w - 6):
index = int(np.random.random() * 6)
glassImg[i, j] = self.src[i + index, j + index]
return glassImg
2 浮雕特效
浮雕特效,是让要呈现的图像看起来“突起于石头表面”,根据凹凸程度不同形成三维的立体效果。数学原理是先刻画出图像的轮廓,再降低边缘周围的像素值,从而产生一张立体浮雕效果。
# 浮雕特效
def relief(self):
reliefImg = np.zeros((self.h, self.w, 1), np.uint8)
for i in range(self.h):
for j in range(self.w - 1):
edge = int(self.gray[i, j]) - int(self.gray[i, j + 1]) # 得到边缘
val = edge + 120 # 产生立体感
if val > 255:
val = 255
if val < 0:
val = 0
reliefImg[i, j] = val
return reliefImg
3 油画特效
油画特效,是让图像看上去像颜料所画,产生一种古典、褶皱的效果。几乎所有修图软件都支持油画特效,其数学原理是:
- 定义为一个卷积核
- 用卷积核对图形进行扫描,对扫描框内像素的灰度进行量化
- 对不同的等级的像素点数目进行计数
- 找到扫描框中灰度等级最多的像素点,并对这些像素点的灰度值求均值
- 用均值代替原像素值
- 重复上述操作直至卷积核扫描完整幅图像
def oil(self):
oilImg = np.zeros((self.h, self.w, 3), np.uint8)
for i in range(2, self.h - 2):
for j in range(2, self.w - 2):
# 量化向量
quant = np.zeros(8, np.uint8)
# 4x4卷积核
for k in range(-2, 2):
for t in range(-2, 2):
level = int(self.gray[i + k, j + t] / 32)
# 量化计数
quant[level] = quant[level] + 1
# 求最大量化值及其索引
valMax = max(quant)
valIndex = list(quant).index(valMax)
# 像素平均
for k in range(-2, 2):
for t in range(-2, 2):
if self.gray[i + k, j + t] >= (valIndex * 32) \
and self.gray[i + k, j + t] <= ((valIndex + 1) * 32):
(b, g, r) = self.src[i + k, j + t]
oilImg[i, j] = (b, g, r)
return oilImg
4 马赛克特效
马赛克特效,是当前使用较为广泛的一种图像或视频处理手段,它将图像或视频中特定区域的色阶细节劣化并造成色块打乱的效果,主要目的通常是使特定区域无法辨认。其数学原理很简单,就是让某个集合内的像素相同即可。
# 马赛克特效
def mask(self):
maskImg = np.zeros((self.h, self.w, 3), np.uint8)
for i in range(self.h - 5):
for j in range(self.w - 5):
if i%5==0 and j%5==0 :
for k in range(5):
for t in range(5):
(b, g, r) = self.src[i, j]
maskImg[i + k, j + t] = (b, g, r)
return maskImg
5 素描特效
素描特效,是使用单一色彩表现明度变化的绘画。数学原理是采用高斯模糊与灰度倒置的方式产生素描的空间造型。
# 素描特效
def sketch(self):
temp = 255 - self.gray
gauss = cv2.GaussianBlur(temp, (21, 21), 0)
inverGauss = 255 - gauss
return cv2.divide(self.gray, inverGauss, scale = 127.0)
6 怀旧特效
怀旧特效,是基于心理学公式对原图像三个色彩通道进行变换和低通滤波,产生怀旧的光影效果。
心理学公式(人眼对绿色更敏感):
B= 0.272 * r + 0.534 * g + 0.131 * b
G = 0.349 * r + 0.686 * g + 0.168 * b
R = 0.393 * r + 0.769 * g + 0.189 * b
# 怀旧特效
def old(self):
oldImg = np.zeros((self.h, self.w, 3), np.uint8)
for i in range(self.h):
for j in range(self.w):
b = 0.272 * self.src[i, j][2] + 0.534 * self.src[i, j][1] + 0.131 * self.src[i, j][0]
g = 0.349 * self.src[i, j][2] + 0.686 * self.src[i, j][1] + 0.168 * self.src[i, j][0]
r = 0.393 * self.src[i, j][2] + 0.769 * self.src[i, j][1] + 0.189 * self.src[i, j][0]
if b > 255:
b = 255
if g > 255:
g = 255
if r > 255:
r = 255
oldImg[i, j] = np.uint8((b, g, r))
return oldImg
7 流年特效
流年特效,是美图软件常用的特性处理手段。其数学原理是基于原图像的蓝色通道进行变换
# 流年特效
def fleet(self):
fleetImg = np.zeros((self.h, self.w, 3), np.uint8)
for i in range(self.h):
for j in range(0, self.w):
b = math.sqrt(self.src[i, j][0]) * 14
g = self.src[i, j][1]
r = self.src[i, j][2]
if b > 255:
b = 255
fleetImg[i, j] = np.uint8((b, g, r))
return fleetImg
8 卡通特效
卡通特效,顾名思义,是卡通特效。
# 卡通特效
def cartoon(self):
num = 7 # 双边滤波数目
for i in range(num):
cv2.bilateralFilter(self.src, d = 9, sigmaColor = 5, sigmaSpace = 3)
median = cv2.medianBlur(self.gray, 7)
edge = cv2.adaptiveThreshold(median, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, blockSize = 5, C = 2)
edge = cv2.cvtColor(edge, cv2.COLOR_GRAY2RGB)
return cv2.bitwise_and(self.src, edge)
作者:Mr.Winter
参考原文:https://blog.csdn.net/FRIGIDWINTER/article/details/123330206
相关推荐
- 软件测试|Python requests库的安装和使用指南
-
简介requests库是Python中一款流行的HTTP请求库,用于简化HTTP请求的发送和处理,也是我们在使用Python做接口自动化测试时,最常用的第三方库。本文将介绍如何安装和使用request...
- python3.8的数据可视化pyecharts库安装和经典作图,值得收藏
-
1.Deepin-linux下的python3.8安装pyecharts库(V1.0版本)1.1去github官网下载:https://github.com/pyecharts/pyecharts1...
- 我在安装Python库的时候一直出这个错误,尝试很多方法,怎么破?
-
大家好,我是皮皮。一、前言前几天在Python星耀群【我喜欢站在一号公路上】问了一个Python库安装的问题,一起来看看吧。下图是他的一个报错截图:二、实现过程这里【对不起果丹皮】提示到上图报错上面说...
- 自动化测试学习:使用python库Paramiko实现远程服务器上传和下载
-
前言测试过程中经常会遇到需要将本地的文件上传到远程服务器上,或者需要将服务器上的文件拉到本地进行操作,以前安静经常会用到xftp工具。今天安静介绍一种python库Paramiko,可以帮助我们通过代...
- Python 虚拟环境管理库 - poetry(python虚拟环境virtualenv)
-
简介Poetry是Python中的依赖管理和打包工具,它允许你声明项目所依赖的库,并为你管理它们。相比于Pipev,我觉得poetry更加清爽,显示更友好一些,虽然它的打包发布我们一般不使...
- pycharm(pip)安装 python 第三方库,时下载速度太慢咋办?
-
由于pip默认的官方软件源服务器在国外,所以速度慢,导致下载时间长,甚至下载会频繁中断,重试次数过多时会被拒绝。解决办法1:更换国内的pip软件源即可。pip指定软件源安装命令格式:pipinsta...
- 【Python第三方库安装】介绍8种情况,这里最全看这里就够了!
-
**本图文作品主要解决CMD或pycharm终端下载安装第三方库可能出错的问题**本作品介绍了8种安装方法,这里最全的python第三方库安装教程,简单易上手,满满干货!希望大家能愉快地写代码,而不要...
- python关于if语句的运用(python中如何用if语句)
-
感觉自己用的最笨的方式来解这道题...
- Python核心技术——循环和迭代(上)
-
这次,我们先来看看处理查找最大的数字问题上,普通人思维和工程师思维有什么不一样。例如:lst=[3,6,10,5,7,9,12]在lst列表中寻找最大的数字,你可能一眼能看出来,最大值为...
- 力扣刷题技巧篇|程序员萌新如何高效刷题
-
很多新手初刷力扣时,可能看过很多攻略,类似于按照类型来刷数组-链表-哈希表-字符串-栈与队列-树-回溯-贪心-动态规划-图论-高级数据结构之类的。可转念一想,即...
- “千万别学我!从月薪3000到3万,我靠这3个笨方法逆袭”
-
3年前,我还在为房租而忧心忡忡,那时月薪仅有3000元;如今,我的月收入3万!很多人都问我是如何做到的,其实关键就在于3个步骤。今天我毫无保留地分享给大家,哪怕你现在工资低、缺乏资源,照着做也能够实...
- 【独家攻略】Anaconda秒建PyTorch虚拟环境,告别踩坑,小白必看
-
目录一.Pytorch虚拟环境简介二.CUDA简介三.Conda配置Pytorch环境conda安装Pytorch环境conda下载安装pytorch包测试四.NVIDIA驱动安装五.conda指令一...
- 入门扫盲:9本自学Python PDF书籍,让你避免踩坑,轻松变大神!
-
工作后在学习Python这条路上,踩过很多坑。今天给大家推荐9本自学Python,让大家避免踩坑。入门扫盲:让你不会从一开始就从入门到放弃1《看漫画学Python:有趣、有料、好玩、好用》2《Pyth...
- 整蛊大法传授于你,不要说是我告诉你的
-
大家好,我是白云。给大家整理一些恶搞代码,谨慎使用!小心没朋友。1.电脑死机打开无数个计算器,直到死机setwsh=createobject("wscript.shell")do...
- python 自学“笨办法”7-9章(笨办法学python3视频)
-
笨办法这本书,只强调一点,就是不断敲代码,从中增加肌肉记忆,并且理解和记住各种方法。第7章;是更多的打印,没错就是更多的打印第八章;打印,打印,这次的内容是fomat的使用与否f“{}{}”相同第九...
你 发表评论:
欢迎- 一周热门
-
-
python 3.8调用dll - Could not find module 错误的解决方法
-
加密Python源码方案 PyArmor(python项目源码加密)
-
Python3.8如何安装Numpy(python3.6安装numpy)
-
大学生机械制图搜题软件?7个受欢迎的搜题分享了
-
编写一个自动生成双色球号码的 Python 小脚本
-
免费男女身高在线计算器,身高计算公式
-
将python文件打包成exe程序,复制到每台电脑都可以运行
-
Python学习入门教程,字符串函数扩充详解
-
Python数据分析实战-使用replace方法模糊匹配替换某列的值
-
Python进度条显示方案(python2 进度条)
-
- 最近发表
-
- 软件测试|Python requests库的安装和使用指南
- python3.8的数据可视化pyecharts库安装和经典作图,值得收藏
- 我在安装Python库的时候一直出这个错误,尝试很多方法,怎么破?
- 自动化测试学习:使用python库Paramiko实现远程服务器上传和下载
- Python 虚拟环境管理库 - poetry(python虚拟环境virtualenv)
- pycharm(pip)安装 python 第三方库,时下载速度太慢咋办?
- 【Python第三方库安装】介绍8种情况,这里最全看这里就够了!
- python关于if语句的运用(python中如何用if语句)
- Python核心技术——循环和迭代(上)
- 力扣刷题技巧篇|程序员萌新如何高效刷题
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)