百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

机器不学习:Java如何跨语言调用Python/R训练的模型

off999 2024-10-10 07:50 16 浏览 0 评论

机器不学习 www.jqbxx.com : 深度聚合机器学习、深度学习算法及技术实战

在 如何使用sklearn进行在线实时预测(构建真实世界中可用的模型) 这篇文章中,我们使用 sklearn + flask 构建了一个实时预测的模型应用。无论是 sklearn 还是 flask,都是用 Python 编写的,在工业界,我们经常会使用 Python 或 R 来训练离线模型, 使用 Java 来做在线 Web 开发应用,这就涉及到了使用 Java 跨语言来调用 Python 或 R 训练的模型。很明显,之前方式就无法满足要求了。

文章目录 [展示]

PMML

概念

PMML 是 Predictive Model Markup Language 的缩写,翻译为中文就是“预测模型标记语言”。它是一种基于XML的标准语言,用于表达数据挖掘模型,可以用来在不同的应用程序中交换模型。也就是说它定义了一个标准,不同语言都可以根据这个标准来实现。关于 PMML 内部的实现原理细节,我们这里不做深究,感兴趣的可以参见:http://dmg.org/pmml/v4-3/GeneralStructure.html

PMML 能做什么

介绍完了 PMML 的概念后,大家可能还是很懵逼,不清楚它有什么用。先来相对正式的说下它的用处:对于 PMML,使用一个应用程序很容易在一个系统上开发模型,并且只需通过发送XML配置文件就可以在另一个系统上使用另一个应用程序部署模型。也就是说我们可以通过 Python 或 R 训练模型,将模型转为 PMML 文件,再使用 Java 根据 PMML 文件来构建 Java 程序。来看一张关于 PMML 用途的图片。

这一张图的信息量爆炸我,我来一一说明下:

  • 整个流程分为两部分:离线和在线。
  • 离线部分流程是将样本进行特征工程,然后进行训练,生成模型。一般离线部分常用 Python 中的 sklearn、R 或者 Spark ML 来训练模型。
  • 在线部分是根据请求得到样本数据,对这些数据采用与离线特征工程一样的方式来处理,然后使用模型进行评估。一般在线部分常用 Java、C++ 来开发。
  • 离线部分与在线部分是通过 PMML 连接的,也就是说离线训练好了模型之后,将模型导出为 PMML 文件,在线部分加载该 PMML 文件生成对应的评估模型。

我们可以看到,PMML 是连接离线与在线环节的关键,一般导出 PMML 文件和 加载 PMML 文件都需要各个语言来做单独的实现。不过幸运的是,已经有很多大神实现了这些,可以参见:https://github.com/jpmml 。

实战环节

训练并导出 PMML

我们这里仍然是通过 sklearn 训练一个随机森林模型,我们需要借助 sklearn2pmml 将 sklearn 训练的模型导出为 PMML 文件。如果没有 sklearn2pmml,请输入以下命令来安装:

pip install --user git+https://github.com/jpmml/sklearn2pmml.git

Bash

我们来看下如何使用 sklearn2pmml 。

from sklearn.datasets import load_iris

from sklearn.ensemble import RandomForestClassifier

from sklearn2pmml import PMMLPipeline, sklearn2pmml

iris = load_iris()

# 创建带有特征名称的 DataFrame

iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)

# 创建模型管道

iris_pipeline = PMMLPipeline([

("classifier", RandomForestClassifier())

])

# 训练模型

iris_pipeline.fit(iris_df, iris.target)

# 导出模型到 RandomForestClassifier_Iris.pmml 文件

sklearn2pmml(iris_pipeline, "RandomForestClassifier_Iris.pmml")

Python

导出成功后,我们将在当前路径看到一个 PMML 文件:RandomForestClassifier_Iris.pmml。

导入 PMML 并进行评估

生成了 PMML 文件后,接下来我们要做的就是使用 Java 导入(加载)PMML文件。这里借助了 Java 的第三方依赖:pmml-evaluator。我们需要在 pom.xml 文件中加入以下依赖:

<dependency>

<groupId>org.jpmml</groupId>

<artifactId>pmml-evaluator</artifactId>

<version>1.4.1</version>

</dependency>

<dependency>

<groupId>org.jpmml</groupId>

<artifactId>pmml-evaluator-extension</artifactId>

<version>1.4.1</version>

</dependency>

Bash

引入 PMML 文件并进行评估的代码如下:

import org.dmg.pmml.FieldName;

import org.dmg.pmml.PMML;

import org.jpmml.evaluator.*;

import org.jpmml.model.PMMLUtil;

import org.xml.sax.SAXException;

import javax.xml.bind.JAXBException;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

public class ClassificationModel {

private Evaluator modelEvaluator;

/**

* 通过传入 PMML 文件路径来生成机器学习模型

*

* @param pmmlFileName pmml 文件路径

*/

public ClassificationModel(String pmmlFileName) {

PMML pmml = null;

try {

if (pmmlFileName != null) {

InputStream is = new FileInputStream(pmmlFileName);

pmml = PMMLUtil.unmarshal(is);

try {

is.close();

} catch (IOException e) {

System.out.println("InputStream close error!");

}

ModelEvaluatorFactory modelEvaluatorFactory = ModelEvaluatorFactory.newInstance();

this.modelEvaluator = (Evaluator) modelEvaluatorFactory.newModelEvaluator(pmml);

modelEvaluator.verify();

System.out.println("加载模型成功!");

}

} catch (SAXException e) {

e.printStackTrace();

} catch (JAXBException e) {

e.printStackTrace();

} catch (FileNotFoundException e) {

e.printStackTrace();

}

}

// 获取模型需要的特征名称

public List<String> getFeatureNames() {

List<String> featureNames = new ArrayList<String>();

List<InputField> inputFields = modelEvaluator.getInputFields();

for (InputField inputField : inputFields) {

featureNames.add(inputField.getName().toString());

}

return featureNames;

}

// 获取目标字段名称

public String getTargetName() {

return modelEvaluator.getTargetFields().get(0).getName().toString();

}

// 使用模型生成概率分布

private ProbabilityDistribution getProbabilityDistribution(Map<FieldName, ?> arguments) {

Map<FieldName, ?> evaluateResult = modelEvaluator.evaluate(arguments);

FieldName fieldName = new FieldName(getTargetName());

return (ProbabilityDistribution) evaluateResult.get(fieldName);

}

// 预测不同分类的概率

public ValueMap<String, Number> predictProba(Map<FieldName, Number> arguments) {

ProbabilityDistribution probabilityDistribution = getProbabilityDistribution(arguments);

return probabilityDistribution.getValues();

}

// 预测结果分类

public Object predict(Map<FieldName, ?> arguments) {

ProbabilityDistribution probabilityDistribution = getProbabilityDistribution(arguments);

return probabilityDistribution.getPrediction();

}

public static void main(String[] args) {

ClassificationModel clf = new ClassificationModel("RandomForestClassifier_Iris.pmml");

List<String> featureNames = clf.getFeatureNames();

System.out.println("feature: " + featureNames);

// 构建待预测数据

Map<FieldName, Number> waitPreSample = new HashMap<>();

waitPreSample.put(new FieldName("sepal length (cm)"), 10);

waitPreSample.put(new FieldName("sepal width (cm)"), 1);

waitPreSample.put(new FieldName("petal length (cm)"), 3);

waitPreSample.put(new FieldName("petal width (cm)"), 2);

System.out.println("waitPreSample predict result: " + clf.predict(waitPreSample).toString());

System.out.println("waitPreSample predictProba result: " + clf.predictProba(waitPreSample).toString());

}

}

Java

输出结果

加载模型成功!

feature: [sepal length (cm), petal width (cm), sepal width (cm), petal length (cm)]

waitPreSample predict result: 1 waitPreSample predictProba result: {0=0.0, 1=0.5, 2=0.5}

Bash

可以看到,模型需要的特征为:[sepal length (cm), petal width (cm), sepal width (cm), petal length (cm)],预测该样本最终属于目标编号为 1 的类型,预测该样本属于不同目标编号的概率分布,{0=0.0, 1=0.5, 2=0.5}。

小结

为了实现 Java 跨语言调用 Python/R 训练好的模型,我们借助 PMML 的规范,将模型固化为 PMML 文件,再使用该文件生成模型来评估。

相关推荐

真的没想到这个python装饰器还能这么写,见也没见过!

引言众所周知,python中,装饰器是非常好玩的,你能够在很多场景中看到它。有很多人可能经常会使用他人设计的装饰器,自己却很少设计过几个装饰器。当然也不乏有的大神非常善于设计装饰器。但不管如何,装饰...

Python 开发必知的 30 款工具(python语言的开发工具)

全面解析开发者在Python开发各个阶段可使用的核心工具热门开源工具Python开发涉及多个阶段,因此需要多种工具来管理:依赖管理:pip、Conda和Poetry是常见的选择。性能分析:...

快到飞起的Python包管理工具UV:从环境创建到PyPI发布的终极指南

尊敬的诸位!我是一名专注于嵌入式开发的物联网工程师。关注我,持续分享最新物联网与AI资讯和开发实战。期望与您携手探寻物联网与AI的无尽可能。"又在等pip安装包?配置国内镜像源也解决不了的...

Python输出语句print()(python输出语句print(3+5))

Python中的输出语句主要通过内置函数print()实现,它可以灵活输出文本、变量、表达式结果等内容到控制台或其他文件。以下是详细介绍及示例:一、print()基本语法print(*object...

Python range 函数实用指南(python range函数的用法)

对话实录小白:(抓狂)我写了foriinrange(5):,为什么只到4?专家:(推眼镜)range是左闭右开区间!记住:包含起点,不包含终点!基础用法三连击1.标准用法#生成0-4p...

3个实用的Pycharm小技巧(pycharm新手教程)

前言当我们用Pycharm来编写python代码的时候,你是否留意过以下三个技巧,接下来分享给大家。1.技巧一:Pycharm添加addsourcefolder操作1.1需求:我有一个项目,是...

python从入门到脱坑 输入与输出——print()函数

大家好今天开始系统的讲解一些入门课程,遇到不会的也不用想太多,跟着写一遍,学习到新内容是你就会明白.以下是针对Python初学者的print()函数详解,从基础到实用技巧,配合清晰示例:一、最基础用法...

Python进阶-day11:并发编程基础(python处理高并发)

一、学习目标理解线程和进程的区别及其应用场景。掌握Python中threading模块的基本用法。能够编写一个多线程下载器,应用并发编程知识。二、学习内容与时间安排上午(2小时):理论学习1....

Excel合并100个表格要1小时?Python3秒搞定!附代码

###**Python3秒合并100个Excel表格(附完整代码)****别再手动复制粘贴了!用Python一键批量合并,效率提升1200倍!**---####**适用场景**-每月汇...

GIL锁也拦不住!这个多进程方案让python速度提升400%

引言"你的python程序怎么卡死了?"当产品经理第3次拍我桌子时,我终于意识到——在200万行的数据清洗任务面前,GIL锁正在把我的8核CPU变成单核计算器...提前准备为了查看核心...

Python之进度条模块tqdm使用方法(python制作进度条可运行的代码)

tqdm是一个进度条模块,可以很好的描述一个任务的执行过程,并且使用起来也非常方便首先介绍tqdm常用参数:desc-进度条标题total-迭代总次数ncols-进度条总长度ascii-使用A...

Python 中制作神奇的动态进度条(python编写进度条)

在本教程中,我们将学习使用三个用于在Python中创建进度条的流行库:TQDM、alive-progress、progressbar。进度条可以在视觉上为用户提供有关任务进度的反馈,如文件下载、数...

用Python编制模拟简单的进度条(python2 进度条)

模拟实现进度条很多人经常在各种视频软件里面看到进度条对比,尤其是我们很多技术、数据走在世界的前列,通过这种展示出来,很是振奋、很激动、很有成就感。很多工具都能实现的,我们今天用python模拟看看。...

一日一技:python中的string.encode()方法

string.encode()方法string.encode()方法返回给定字符串的编码形式,从Python3.0开始,字符串以Unicode格式存储,即字符串中的每个字符都由一个代码点表示。因此...

python中字符串的操作(python字符串的基本处理)

字符串:英文str。表现形式有4种:‘xs’、“xs”、“”“xsxs”“”、‘’‘‘xxx’’’,三引号有个特殊功能,表示注释,跟#一样的功能,(如果字符串本身就有单则不可用单定义...

取消回复欢迎 发表评论: