如何使用 Java 调取 Python、R 的训练模型?
off999 2024-10-10 07:50 16 浏览 0 评论
在工业界,我们经常会使用 Python 或 R 来训练离线模型, 使用 Java 来做在线 Web 开发应用——这就涉及到了使用 Java 跨语言来调用 Python 或 R 训练的模型。
PMML
PMML 是 Predictive Model Markup Language 的缩写,翻译为中文就是“预测模型标记语言”。它是一种基于XML的标准语言,用于表达数据挖掘模型,可以用来在不同的应用程序中交换模型。
也就是说它定义了一个标准,不同语言都可以根据这个标准来实现。关于 PMML 内部的实现原理细节,我们这里不做深究,感兴趣的可以参见:http://dmg.org/pmml/v4-3/GeneralStructure.html。
PMML 能做什么
介绍完了 PMML 的概念后,大家可能还是很懵,不清楚它有什么用。先来相对正式地说下它的用处:对于 PMML,使用一个应用程序很容易在一个系统上开发模型,并且只需通过发送XML配置文件就可以在另一个系统上使用另一个应用程序部署模型。也就是说我们可以通过 Python 或 R 训练模型,将模型转为 PMML 文件,再使用 Java 根据 PMML 文件来构建 Java 程序。
来看一张关于 PMML 用途的图片:
这张图的信息来一一说明下:
- 整个流程分为两部分:离线和在线。
- 离线部分流程是将样本进行特征工程,然后进行训练、生成模型。一般离线部分常用 Python 中的 sklearn、R 或者 Spark ML 来训练模型。
- 在线部分是根据请求得到样本数据,对这些数据采用与离线特征工程一样的方式来处理,然后使用模型进行评估。一般在线部分常用 Java、C++ 来开发。
- 离线部分与在线部分是通过 PMML 连接的,也就是说离线训练好了模型之后,将模型导出为 PMML 文件,在线部分加载该 PMML 文件生成对应的评估模型。
我们可以看到,PMML 是连接离线与在线环节的关键,一般导出 PMML 文件和加载 PMML 文件都需要各个语言来做单独的实现。不过幸运的是,已经有很多大神实现了这些,可以参见:https://github.com/jpmml 。
实战环节
训练并导出 PMML
我们这里仍然是通过 sklearn 训练一个随机森林模型,我们需要借助 sklearn2pmml 将 sklearn 训练的模型导出为 PMML 文件。如果没有 sklearn2pmml,请输入以下命令来安装:
pip install --user git+https://github.com/jpmml/sklearn2pmml.git
我们来看下如何使用 sklearn2pmml 。
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn2pmml import PMMLPipeline, sklearn2pmml
iris = load_iris()
# 创建带有特征名称的 DataFrame
iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
# 创建模型管道
iris_pipeline = PMMLPipeline([
("classifier", RandomForestClassifier())
])
# 训练模型
iris_pipeline.fit(iris_df, iris.target)
# 导出模型到 RandomForestClassifier_Iris.pmml 文件
sklearn2pmml(iris_pipeline, "RandomForestClassifier_Iris.pmml")
导出成功后,我们将在当前路径看到一个 PMML 文件:RandomForestClassifier_Iris.pmml。
导入 PMML 并进行评估
生成了 PMML 文件后,接下来我们要做的就是使用 Java 导入(加载)PMML文件。这里借助了 Java 的第三方依赖:pmml-evaluator。我们需要在 pom.xml 文件中加入以下依赖:
<dependency>
<groupId>org.jpmml</groupId>
<artifactId>pmml-evaluator</artifactId>
<version>1.4.1</version>
</dependency>
<dependency>
<groupId>org.jpmml</groupId>
<artifactId>pmml-evaluator-extension</artifactId>
<version>1.4.1</version>
</dependency>
引入 PMML 文件并进行评估的代码如下:
import org.dmg.pmml.FieldName;
import org.dmg.pmml.PMML;
import org.jpmml.evaluator.*;
import org.jpmml.model.PMMLUtil;
import org.xml.sax.SAXException;
import javax.xml.bind.JAXBException;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class ClassificationModel {
private Evaluator modelEvaluator;
/**
* 通过传入 PMML 文件路径来生成机器学习模型
*
* @param pmmlFileName pmml 文件路径
*/
public ClassificationModel(String pmmlFileName) {
PMML pmml = null;
try {
if (pmmlFileName != null) {
InputStream is = new FileInputStream(pmmlFileName);
pmml = PMMLUtil.unmarshal(is);
try {
is.close();
} catch (IOException e) {
System.out.println("InputStream close error!");
}
ModelEvaluatorFactory modelEvaluatorFactory = ModelEvaluatorFactory.newInstance();
this.modelEvaluator = (Evaluator) modelEvaluatorFactory.newModelEvaluator(pmml);
modelEvaluator.verify();
System.out.println("加载模型成功!");
}
} catch (SAXException e) {
e.printStackTrace();
} catch (JAXBException e) {
e.printStackTrace();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
// 获取模型需要的特征名称
public List<String> getFeatureNames() {
List<String> featureNames = new ArrayList<String>();
List<InputField> inputFields = modelEvaluator.getInputFields();
for (InputField inputField : inputFields) {
featureNames.add(inputField.getName().toString());
}
return featureNames;
}
// 获取目标字段名称
public String getTargetName() {
return modelEvaluator.getTargetFields().get(0).getName().toString();
}
// 使用模型生成概率分布
private ProbabilityDistribution getProbabilityDistribution(Map<FieldName, ?> arguments) {
Map<FieldName, ?> evaluateResult = modelEvaluator.evaluate(arguments);
FieldName fieldName = new FieldName(getTargetName());
return (ProbabilityDistribution) evaluateResult.get(fieldName);
}
// 预测不同分类的概率
public ValueMap<String, Number> predictProba(Map<FieldName, Number> arguments) {
ProbabilityDistribution probabilityDistribution = getProbabilityDistribution(arguments);
return probabilityDistribution.getValues();
}
// 预测结果分类
public Object predict(Map<FieldName, ?> arguments) {
ProbabilityDistribution probabilityDistribution = getProbabilityDistribution(arguments);
return probabilityDistribution.getPrediction();
}
public static void main(String[] args) {
ClassificationModel clf = new ClassificationModel("RandomForestClassifier_Iris.pmml");
List<String> featureNames = clf.getFeatureNames();
System.out.println("feature: " + featureNames);
// 构建待预测数据
Map<FieldName, Number> waitPreSample = new HashMap<>();
waitPreSample.put(new FieldName("sepal length (cm)"), 10);
waitPreSample.put(new FieldName("sepal width (cm)"), 1);
waitPreSample.put(new FieldName("petal length (cm)"), 3);
waitPreSample.put(new FieldName("petal width (cm)"), 2);
System.out.println("waitPreSample predict result: " + clf.predict(waitPreSample).toString());
System.out.println("waitPreSample predictProba result: " + clf.predictProba(waitPreSample).toString());
}
}
输出结果:
加载模型成功!
feature: [sepal length (cm), petal width (cm), sepal width (cm), petal length (cm)]
waitPreSample predict result: 1
waitPreSample predictProba result: {0=0.0, 1=0.5, 2=0.5}
可以看到,模型需要的特征为:[sepal length (cm), petal width (cm), sepal width (cm), petal length (cm)],预测该样本最终属于目标编号为 1 的类型,预测该样本属于不同目标编号的概率分布,{0=0.0, 1=0.5, 2=0.5}。
小结
为了实现 Java 跨语言调用 Python/R 训练好的模型,我们借助 PMML 的规范,将模型固化为 PMML 文件,再使用该文件生成模型来评估。
作者:1or0,专注于机器学习研究。
声明:本文为公众号 AI派 投稿,版权归对方所有。
“征稿啦!”
CSDN 公众号秉持着「与千万技术人共成长」理念,不仅以「极客头条」、「畅言」栏目在第一时间以技术人的独特视角描述技术人关心的行业焦点事件,更有「技术头条」专栏,深度解读行业内的热门技术与场景应用,让所有的开发者紧跟技术潮流,保持警醒的技术嗅觉,对行业趋势、技术有更为全面的认知。
如果你有优质的文章,或是行业热点事件、技术趋势的真知灼见,或是深度的应用实践、场景方案等的新见解,欢迎联系 CSDN 投稿,联系方式:微信(guorui_1118,请备注投稿+姓名+公司职位),邮箱(guorui@csdn.net)。
相关推荐
- 真的没想到这个python装饰器还能这么写,见也没见过!
-
引言众所周知,python中,装饰器是非常好玩的,你能够在很多场景中看到它。有很多人可能经常会使用他人设计的装饰器,自己却很少设计过几个装饰器。当然也不乏有的大神非常善于设计装饰器。但不管如何,装饰...
- Python 开发必知的 30 款工具(python语言的开发工具)
-
全面解析开发者在Python开发各个阶段可使用的核心工具热门开源工具Python开发涉及多个阶段,因此需要多种工具来管理:依赖管理:pip、Conda和Poetry是常见的选择。性能分析:...
- 快到飞起的Python包管理工具UV:从环境创建到PyPI发布的终极指南
-
尊敬的诸位!我是一名专注于嵌入式开发的物联网工程师。关注我,持续分享最新物联网与AI资讯和开发实战。期望与您携手探寻物联网与AI的无尽可能。"又在等pip安装包?配置国内镜像源也解决不了的...
- Python输出语句print()(python输出语句print(3+5))
-
Python中的输出语句主要通过内置函数print()实现,它可以灵活输出文本、变量、表达式结果等内容到控制台或其他文件。以下是详细介绍及示例:一、print()基本语法print(*object...
- Python range 函数实用指南(python range函数的用法)
-
对话实录小白:(抓狂)我写了foriinrange(5):,为什么只到4?专家:(推眼镜)range是左闭右开区间!记住:包含起点,不包含终点!基础用法三连击1.标准用法#生成0-4p...
- 3个实用的Pycharm小技巧(pycharm新手教程)
-
前言当我们用Pycharm来编写python代码的时候,你是否留意过以下三个技巧,接下来分享给大家。1.技巧一:Pycharm添加addsourcefolder操作1.1需求:我有一个项目,是...
- python从入门到脱坑 输入与输出——print()函数
-
大家好今天开始系统的讲解一些入门课程,遇到不会的也不用想太多,跟着写一遍,学习到新内容是你就会明白.以下是针对Python初学者的print()函数详解,从基础到实用技巧,配合清晰示例:一、最基础用法...
- Python进阶-day11:并发编程基础(python处理高并发)
-
一、学习目标理解线程和进程的区别及其应用场景。掌握Python中threading模块的基本用法。能够编写一个多线程下载器,应用并发编程知识。二、学习内容与时间安排上午(2小时):理论学习1....
- Excel合并100个表格要1小时?Python3秒搞定!附代码
-
###**Python3秒合并100个Excel表格(附完整代码)****别再手动复制粘贴了!用Python一键批量合并,效率提升1200倍!**---####**适用场景**-每月汇...
- GIL锁也拦不住!这个多进程方案让python速度提升400%
-
引言"你的python程序怎么卡死了?"当产品经理第3次拍我桌子时,我终于意识到——在200万行的数据清洗任务面前,GIL锁正在把我的8核CPU变成单核计算器...提前准备为了查看核心...
- Python之进度条模块tqdm使用方法(python制作进度条可运行的代码)
-
tqdm是一个进度条模块,可以很好的描述一个任务的执行过程,并且使用起来也非常方便首先介绍tqdm常用参数:desc-进度条标题total-迭代总次数ncols-进度条总长度ascii-使用A...
- Python 中制作神奇的动态进度条(python编写进度条)
-
在本教程中,我们将学习使用三个用于在Python中创建进度条的流行库:TQDM、alive-progress、progressbar。进度条可以在视觉上为用户提供有关任务进度的反馈,如文件下载、数...
- 用Python编制模拟简单的进度条(python2 进度条)
-
模拟实现进度条很多人经常在各种视频软件里面看到进度条对比,尤其是我们很多技术、数据走在世界的前列,通过这种展示出来,很是振奋、很激动、很有成就感。很多工具都能实现的,我们今天用python模拟看看。...
- 一日一技:python中的string.encode()方法
-
string.encode()方法string.encode()方法返回给定字符串的编码形式,从Python3.0开始,字符串以Unicode格式存储,即字符串中的每个字符都由一个代码点表示。因此...
- python中字符串的操作(python字符串的基本处理)
-
字符串:英文str。表现形式有4种:‘xs’、“xs”、“”“xsxs”“”、‘’‘‘xxx’’’,三引号有个特殊功能,表示注释,跟#一样的功能,(如果字符串本身就有单则不可用单定义...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 真的没想到这个python装饰器还能这么写,见也没见过!
- Python 开发必知的 30 款工具(python语言的开发工具)
- 快到飞起的Python包管理工具UV:从环境创建到PyPI发布的终极指南
- Python输出语句print()(python输出语句print(3+5))
- Python range 函数实用指南(python range函数的用法)
- 3个实用的Pycharm小技巧(pycharm新手教程)
- python从入门到脱坑 输入与输出——print()函数
- Python进阶-day11:并发编程基础(python处理高并发)
- Excel合并100个表格要1小时?Python3秒搞定!附代码
- GIL锁也拦不住!这个多进程方案让python速度提升400%
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)