百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

基于Python的matplotlib基础介绍(python语言中matplotlib基础包的作用)

off999 2024-10-12 06:10 15 浏览 0 评论

数据可视化非常重要,因为错误或不充分的数据表示方法可能会毁掉原本很出色的数据分析工作。


matplotlib 库是专门用于开发2D图表(包括3D图表)的,突出优点:


  • 使用起来极为简单。

  • 以渐进、交互式方式实现数据可视化。

  • 表达式和文本使用LaTeX排版。

  • 对图像元素控制力强。

  • 可输出PNG、PDF、SVG和EPS等多种格式。


安装

conda install matplotlib


或者

pip install matplotlib

matplotlib 架构


matplotlib 的主要任务之一,就是提供一套表示和操作图形对象(主要对象)以及它的内部对象的函数和工具。其不仅可以处理图形,还提供事件处理工具,具有为图形添加动画效果的能力。有了这些附加功能,matplotlib 就能生成以键盘按键或鼠标移动触发的事件的交互式图表。


从逻辑上来讲,matplotlib 的整体架构为3层,各层之间单向通信:


  • Scripting (脚本)层。

  • Artist (表现)层。


  • Backend (后端)层。

一、matplotlib的基本用法


import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi, 30) # 在区间内生成30个等差数
y = np.sin(x)
print('x = ', x)
print('y = ', y)

输出:

x =  [-3.14159265 -2.92493109 -2.70826953 -2.49160797 -2.2749464  -2.05828484
 -1.84162328 -1.62496172 -1.40830016 -1.19163859 -0.97497703 -0.75831547
 -0.54165391 -0.32499234 -0.10833078  0.10833078  0.32499234  0.54165391
  0.75831547  0.97497703  1.19163859  1.40830016  1.62496172  1.84162328
  2.05828484  2.2749464   2.49160797  2.70826953  2.92493109  3.14159265]
y =  [-1.22464680e-16 -2.14970440e-01 -4.19889102e-01 -6.05174215e-01
 -7.62162055e-01 -8.83512044e-01 -9.63549993e-01 -9.98533414e-01
 -9.86826523e-01 -9.28976720e-01 -8.27688998e-01 -6.87699459e-01
 -5.15553857e-01 -3.19301530e-01 -1.08119018e-01  1.08119018e-01
  3.19301530e-01  5.15553857e-01  6.87699459e-01  8.27688998e-01
  9.28976720e-01  9.86826523e-01  9.98533414e-01  9.63549993e-01
  8.83512044e-01  7.62162055e-01  6.05174215e-01  4.19889102e-01
  2.14970440e-01  1.22464680e-16]
  • 画一条曲线
plt.figure() # 创建一个新的窗口
plt.plot(x, y) # 画一个x与y相关的曲线
plt.show()# 显示图像
  • 画多条曲线以及添加坐标轴和标签
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi, 100) # 在区间内生成21个等差数
y = np.sin(x)
linear_y = 0.2 * x + 0.1

plt.figure(figsize = (8, 6)) # 自定义窗口的大小

plt.plot(x, y)
plt.plot(x, linear_y, color = "red", linestyle = '--') # 自定义颜色和表示方式

plt.title('y = sin(x) and y = 0.2x + 0.1') # 定义该曲线的标题
plt.xlabel('x') # 定义横轴标签
plt.ylabel('y') # 定义纵轴标签

plt.show()
  • 指定坐标范围 and 设置坐标轴刻度
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi, 100) # 在区间内生成21个等差数
y = np.sin(x)
linear_y = 0.2 * x + 0.1

plt.figure(figsize = (8, 6)) # 自定义窗口的大小

plt.plot(x, y)
plt.plot(x, linear_y, color = "red", linestyle = '--') # 自定义颜色和表示方式

plt.title('y = sin(x) and y = 0.2x + 0.1') # 定义该曲线的标题
plt.xlabel('x') # 定义横轴标签
plt.ylabel('y') # 定义纵轴标签
plt.xlim(-np.pi, np.pi)
plt.ylim(-1, 1)

# 重新设置x轴的刻度
# plt.xticks(np.linspace(-np.pi, np.pi, 5))
x_value_range = np.linspace(-np.pi, np.pi, 5)
x_value_strs = [r'$\pi#39;, r'$-\frac{\pi}{2}#39;, r'$0#39;, r'$\frac{\pi}{2}#39;, r'$\pi#39;]
plt.xticks(x_value_range, x_value_strs)
plt.show() # 显示图像
  • 定义原点在中心的坐标轴
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi, 100)
y = np.sin(x)
linear_y = 0.2 * x + 0.1

plt.figure(figsize = (8, 6)) 

plt.plot(x, y)
plt.plot(x, linear_y, color = "red", linestyle = '--') 

plt.title('y = sin(x) and y = 0.2x + 0.1')
plt.xlabel('x') 
plt.ylabel('y') 
plt.xlim(-np.pi, np.pi)
plt.ylim(-1, 1)

# plt.xticks(np.linspace(-np.pi, np.pi, 5))
x_value_range = np.linspace(-np.pi, np.pi, 5)
x_value_strs = [r'$\pi#39;, r'$-\frac{\pi}{2}#39;, r'$0#39;, r'$\frac{\pi}{2}#39;, r'$\pi#39;]
plt.xticks(x_value_range, x_value_strs)

ax = plt.gca() # 获取坐标轴
ax.spines['right'].set_color('none') # 隐藏上方和右方的坐标轴
ax.spines['top'].set_color('none')

# 设置左方和下方坐标轴的位置
ax.spines['bottom'].set_position(('data', 0)) # 将下方的坐标轴设置到y = 0的位置
ax.spines['left'].set_position(('data', 0)) # 将左方的坐标轴设置到 x = 0 的位置

plt.show() # 显示图像

  • legend图例

使用xticks()和yticks()函数替换轴标签,分别为每个函数传入两列数值。第一个列表存储刻度的位置,第二个列表存储刻度的标签

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi, 100)
y = np.sin(x)
linear_y = 0.2 * x + 0.1

plt.figure(figsize = (8, 6)) 

# 为曲线加上标签
plt.plot(x, y, label = "y = sin(x)")
plt.plot(x, linear_y, color = "red", linestyle = '--', label = 'y = 0.2x + 0.1') 

plt.title('y = sin(x) and y = 0.2x + 0.1')
plt.xlabel('x') 
plt.ylabel('y') 
plt.xlim(-np.pi, np.pi)
plt.ylim(-1, 1)

# plt.xticks(np.linspace(-np.pi, np.pi, 5))
x_value_range = np.linspace(-np.pi, np.pi, 5)
x_value_strs = [r'$\pi#39;, r'$-\frac{\pi}{2}#39;, r'$0#39;, r'$\frac{\pi}{2}#39;, r'$\pi#39;]
plt.xticks(x_value_range, x_value_strs)

ax = plt.gca() 
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')


ax.spines['bottom'].set_position(('data', 0)) 
ax.spines['left'].set_position(('data', 0)) 

# 将曲线的信息标识出来
plt.legend(loc = 'lower right', fontsize = 12)
plt.show() 

legend方法中的loc 参数可选设置

位置字符串

位置编号

位置表述

‘best’

0

最佳位置

‘upper right’

1

右上角

‘upper left’

2

左上角

‘lower left’

3

左下角

‘lower right’

4

右下角

‘right’

5

右侧

‘center left’

6

左侧垂直居中

‘center right’

7

右侧垂直居中

‘lower center’

8

下方水平居中

‘upper center’

9

上方水平居中

‘center’

10

正中间

二、柱状图

使用的方法:plt.bar

import numpy as np
import matplotlib.pyplot as plt

plt.figure(figsize = (16, 12))
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([3, 5, 7, 6, 2, 6, 10, 15])
plt.plot(x, y, 'r', lw = 5) # 指定线的颜色和宽度

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([13, 25, 17, 36, 21, 16, 10, 15])
plt.bar(x, y, 0.2, alpha = 1, color='b') # 生成柱状图,指明图的宽度,透明度和颜色
plt.show()

有的时候柱状图会出现在x轴的俩侧,方便进行比较,代码实现如下:

import numpy as np
import matplotlib.pyplot as plt

plt.figure(figsize = (16, 12))
n = 12
x = np.arange(n) # 按顺序生成从12以内的数字
y1 = (1 - x / float(n)) * np.random.uniform(0.5, 1.0, n)
y2 = (1 - x / float(n)) * np.random.uniform(0.5, 1.0, n)

# 设置柱状图的颜色以及边界颜色
#+y表示在x轴的上方 -y表示在x轴的下方
plt.bar(x, +y1, facecolor = '#9999ff', edgecolor = 'white')
plt.bar(x, -y2, facecolor = '#ff9999', edgecolor = 'white')

plt.xlim(-0.5, n) # 设置x轴的范围,
plt.xticks(()) # 可以通过设置刻度为空,消除刻度
plt.ylim(-1.25, 1.25) # 设置y轴的范围
plt.yticks(())

# plt.text()在图像中写入文本,设置位置,设置文本,ha设置水平方向对其方式,va设置垂直方向对齐方式
for x1, y in zip(x, y2):
    plt.text(x1, -y - 0.05, '%.2f' % y, ha = 'center', va = 'top')
for x1, y in zip(x, y1):
    plt.text(x1, y + 0.05, '%.2f' % y, ha = 'center', va = 'bottom')
plt.show()

三、散点图

import numpy as np
import matplotlib.pyplot as plt
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = np.pi * (15 * np.random.rand(N))**2
plt.scatter(x, y, s = area,c = colors, alpha = 0.8)

plt.show()

四、等高线图


import matplotlib.pyplot as plt
import numpy as np

def f(x, y):
    return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)

n = 256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)
X, Y = np.meshgrid(x, y)  # 生成网格坐标 将x轴与y轴正方形区域的点全部获取
line_num = 10 # 等高线的数量

plt.figure(figsize = (16, 12))

#contour 生成等高线的函数
#前俩个参数表示点的坐标,第三个参数表示等成等高线的函数,第四个参数表示生成多少个等高线
C = plt.contour(X, Y, f(X, Y), line_num, colors = 'black', linewidths = 0.5) # 设置颜色和线段的宽度
plt.clabel(C, inline = True, fontsize = 12) # 得到每条等高线确切的值

# 填充颜色, cmap 表示以什么方式填充,hot表示填充热量的颜色
plt.contourf(X, Y, f(X, Y), line_num, alpha = 0.75, cmap = plt.cm.hot)

plt.show()

五、处理图片


import matplotlib.pyplot as plt
import matplotlib.image as mpimg # 导入处理图片的库
import matplotlib.cm as cm # 导入处理颜色的库colormap

plt.figure(figsize = (16, 12))
img = mpimg.imread('image/fuli.jpg')# 读取图片
print(img) # numpy数据
print(img.shape) # 

plt.imshow(img, cmap = 'hot')
plt.colorbar() # 得到颜色多对应的数值
plt.show()
[[[ 11  23  63]
  [ 12  24  64]
  [  1  13  55]
  ...
  [  1  12  42]
  [  1  12  42]
  [  1  12  42]]

 [[ 19  31  71]
  [  3  15  55]
  [  0  10  52]
  ...
  [  0  11  39]
  [  0  11  39]
  [  0  11  39]]

 [[ 22  34  74]
  [  3  15  55]
  [  7  19  61]
  ...
  [  0  11  39]
  [  0  11  39]
  [  0  11  39]]

 ...

 [[ 84 125 217]
  [ 80 121 213]
  [ 78 118 214]
  ...
  [ 58  90 191]
  [ 54  86 187]
  [ 53  85 186]]

 [[ 84 124 220]
  [ 79 119 215]
  [ 78 117 218]
  ...
  [ 55  87 188]
  [ 55  87 188]
  [ 55  87 188]]

 [[ 83 121 220]
  [ 80 118 219]
  [ 83 120 224]
  ...
  [ 56  88 189]
  [ 58  90 191]
  [ 59  91 192]]]
(728, 516, 3)

利用numpy矩阵得到图片

import matplotlib.pyplot as plt
import matplotlib.cm as cm # 导入处理颜色的库colormap
import numpy as np

size =  8
# 得到一个8*8数值在(0, 1)之间的矩阵
a = np.linspace(0, 1, size ** 2).reshape(size, size)

plt.figure(figsize = (16, 12))
plt.imshow(a)
plt.show()

六、3D图


import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # 导入Axes3D对象

fig = plt.figure(figsize = (16, 12))
ax = fig.add_subplot(111, projection = '3d') # 得到3d图像

x = np.arange(-4, 4, 0.25)
y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(x, y) # 生成网格
Z = np.sqrt(X ** 2 + Y ** 2)

# 画曲面图              # 行和列对应的跨度         # 设置颜色
ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, cmap = plt.get_cmap('rainbow'))
plt.show()


以上是matplotlib基于测试数据的数据可视化,结合实际项目中数据,代码稍加修改,即可有让人印象深刻的效果

相关推荐

Python自动化脚本应用与示例(python自动化脚本教程)

Python是编写自动化脚本的绝佳选择,因其语法简洁、库丰富且跨平台兼容性强。以下是Python自动化脚本的常见应用场景及示例,帮助你快速上手:一、常见自动化场景文件与目录操作O批量重命名文件...

如何使用Python实现一个APP(如何用python做一个程序)

要使用Python实现一个APP,你可以选择使用一些流行的移动应用开发框架,如Kivy、PyQt或Tkinter。这里以Kivy为例,它是一个跨平台的Python框架,可以用于创建漂亮的图形用户界面(...

免费定时运行Python程序并存储输出文档的服务推荐

免费定时运行Python程序并存储输出文档的服务推荐以下是几种可以免费定时运行Python程序并存储输出结果的云服务方案:1.PythonAnywhere特点:提供免费的Python托管环境支持定时...

【Python程序开发系列】如何让python脚本一直在后台保持运行

这是我的第385篇原创文章。一、引言让Python脚本在后台持续运行,有几种常见的方式,具体方式可以根据你的系统环境和需求选择。二、Linux或macOS系统2.1使用nohup命令no...

运行和执行Python程序(运行python的程序)

一、Python是一种解释型的脚本编程语言,这样的编程语言一般支持两种代码运行方式:交互式编程在命令行窗口中直接输入代码,按下回车键就可以运行代码,并立即看到输出结果;执行完一行代码,你还可以继续...

Python 初学者指南:计算程序的运行时长

在编写Python程序时,了解程序的运行时长是一项很有用的技能。这不仅能帮助你评估代码的效率,还能在优化程序性能时提供关键的数据支持。对于初学者来说,计算程序运行时长其实并不复杂,接下来就让我们看...

pyest+appium实现APP自动化测试,思路全总结在这里

每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试01appium环境搭建安装nodejshttp://nodej...

血脉觉醒后,编程小白我是如何通过Deepseek和Trae轻松开发软件的

以下就是作为一个编程小白的我,是如何一步步开发软件的保姆级教程,请点赞收藏:第一步:打开#deepseek#(首先关闭深度思考和联网搜索)输入或复制你要让它做一个什么样软件的要求和提示词(你可以先用...

我用Deepseek+Trae写的python小软件,小白也能轻松用上模型啦!

利用AI大模型deepseek,搭配TraeCN,用半个小时做了一个本地Ollama安装部署和一键卸载的小工具,哈哈哈!感觉还不错#deepseek#一直想做一个本地Ollama安装部署和一键卸载...

在安卓设备上运行Python的方法(安卓能运行python吗)

技术背景在安卓设备上运行Python可以为开发者提供更多的开发选择和灵活性,能够利用Python丰富的库和简洁的语法来开发各种应用,如游戏、脚本工具等。然而,由于安卓系统原生不支持Python,需要借...

零基础小白,DeepSeek全自动编程,超详细提示词,一键生成软件!

我前面发表了文章,详细说了编程零基础小白,如何利用DeepSeek进行编程的全过程,感兴趣的可以去看看:DeepSeek全自动编程很多人不会写提示词,不知道怎么开始对话。话不多说,请先看下图中的对话,...

小白用DeepSeek+Python编写软件(用python制作软件)

周末无事,用DeepSeek生成全部代码,写了一个mp3音乐播放器,几分钟搞定,DeepSeek确实太强大了。我的提示语是这么写的:“请用Python语言写一个音乐播放器,支持常见音乐格式,我是Pyt...

零基础使用DeepSeek开发Windows应用程序,超简单超实用!

你敢相信,我居然用DeepSeek开发了一个能用的Windows软件!整个过程就像和学霸同桌组队做作业,我负责提需求,DeepSeek负责写代码改bug,全程碰到任何问题直接丢给DeepSeek即可。...

第二篇:如何安装Python并运行你的第一个程序

欢迎回到我的Python入门教程系列!在上一篇中,我们讨论了为什么Python是一门值得学习的编程语言。今天,我们将迈出第一步:安装Python并运行你的第一个程序。无论你是Windows、macOS...

Python 运行,带你找入口,快速读懂程序

有C或Java编程开发经验的软件开发者,初次接触python程序,当你想快速读懂python项目工程时,是否觉得python程序有些太过随意,让你看有些无所适从,进而有些茫然。这是...

取消回复欢迎 发表评论: