基于Python的matplotlib基础介绍(python语言中matplotlib基础包的作用)
off999 2024-10-12 06:10 20 浏览 0 评论
数据可视化非常重要,因为错误或不充分的数据表示方法可能会毁掉原本很出色的数据分析工作。
matplotlib 库是专门用于开发2D图表(包括3D图表)的,突出优点:
- 使用起来极为简单。
- 以渐进、交互式方式实现数据可视化。
- 表达式和文本使用LaTeX排版。
- 对图像元素控制力强。
- 可输出PNG、PDF、SVG和EPS等多种格式。
安装
conda install matplotlib
或者
pip install matplotlib
matplotlib 架构
matplotlib 的主要任务之一,就是提供一套表示和操作图形对象(主要对象)以及它的内部对象的函数和工具。其不仅可以处理图形,还提供事件处理工具,具有为图形添加动画效果的能力。有了这些附加功能,matplotlib 就能生成以键盘按键或鼠标移动触发的事件的交互式图表。
从逻辑上来讲,matplotlib 的整体架构为3层,各层之间单向通信:
- Scripting (脚本)层。
- Artist (表现)层。
- Backend (后端)层。
一、matplotlib的基本用法
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 30) # 在区间内生成30个等差数
y = np.sin(x)
print('x = ', x)
print('y = ', y)
输出:
x = [-3.14159265 -2.92493109 -2.70826953 -2.49160797 -2.2749464 -2.05828484
-1.84162328 -1.62496172 -1.40830016 -1.19163859 -0.97497703 -0.75831547
-0.54165391 -0.32499234 -0.10833078 0.10833078 0.32499234 0.54165391
0.75831547 0.97497703 1.19163859 1.40830016 1.62496172 1.84162328
2.05828484 2.2749464 2.49160797 2.70826953 2.92493109 3.14159265]
y = [-1.22464680e-16 -2.14970440e-01 -4.19889102e-01 -6.05174215e-01
-7.62162055e-01 -8.83512044e-01 -9.63549993e-01 -9.98533414e-01
-9.86826523e-01 -9.28976720e-01 -8.27688998e-01 -6.87699459e-01
-5.15553857e-01 -3.19301530e-01 -1.08119018e-01 1.08119018e-01
3.19301530e-01 5.15553857e-01 6.87699459e-01 8.27688998e-01
9.28976720e-01 9.86826523e-01 9.98533414e-01 9.63549993e-01
8.83512044e-01 7.62162055e-01 6.05174215e-01 4.19889102e-01
2.14970440e-01 1.22464680e-16]
- 画一条曲线
plt.figure() # 创建一个新的窗口
plt.plot(x, y) # 画一个x与y相关的曲线
plt.show()# 显示图像
- 画多条曲线以及添加坐标轴和标签
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 100) # 在区间内生成21个等差数
y = np.sin(x)
linear_y = 0.2 * x + 0.1
plt.figure(figsize = (8, 6)) # 自定义窗口的大小
plt.plot(x, y)
plt.plot(x, linear_y, color = "red", linestyle = '--') # 自定义颜色和表示方式
plt.title('y = sin(x) and y = 0.2x + 0.1') # 定义该曲线的标题
plt.xlabel('x') # 定义横轴标签
plt.ylabel('y') # 定义纵轴标签
plt.show()
- 指定坐标范围 and 设置坐标轴刻度
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 100) # 在区间内生成21个等差数
y = np.sin(x)
linear_y = 0.2 * x + 0.1
plt.figure(figsize = (8, 6)) # 自定义窗口的大小
plt.plot(x, y)
plt.plot(x, linear_y, color = "red", linestyle = '--') # 自定义颜色和表示方式
plt.title('y = sin(x) and y = 0.2x + 0.1') # 定义该曲线的标题
plt.xlabel('x') # 定义横轴标签
plt.ylabel('y') # 定义纵轴标签
plt.xlim(-np.pi, np.pi)
plt.ylim(-1, 1)
# 重新设置x轴的刻度
# plt.xticks(np.linspace(-np.pi, np.pi, 5))
x_value_range = np.linspace(-np.pi, np.pi, 5)
x_value_strs = [r'$\pi#39;, r'$-\frac{\pi}{2}#39;, r'$0#39;, r'$\frac{\pi}{2}#39;, r'$\pi#39;]
plt.xticks(x_value_range, x_value_strs)
plt.show() # 显示图像
- 定义原点在中心的坐标轴
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 100)
y = np.sin(x)
linear_y = 0.2 * x + 0.1
plt.figure(figsize = (8, 6))
plt.plot(x, y)
plt.plot(x, linear_y, color = "red", linestyle = '--')
plt.title('y = sin(x) and y = 0.2x + 0.1')
plt.xlabel('x')
plt.ylabel('y')
plt.xlim(-np.pi, np.pi)
plt.ylim(-1, 1)
# plt.xticks(np.linspace(-np.pi, np.pi, 5))
x_value_range = np.linspace(-np.pi, np.pi, 5)
x_value_strs = [r'$\pi#39;, r'$-\frac{\pi}{2}#39;, r'$0#39;, r'$\frac{\pi}{2}#39;, r'$\pi#39;]
plt.xticks(x_value_range, x_value_strs)
ax = plt.gca() # 获取坐标轴
ax.spines['right'].set_color('none') # 隐藏上方和右方的坐标轴
ax.spines['top'].set_color('none')
# 设置左方和下方坐标轴的位置
ax.spines['bottom'].set_position(('data', 0)) # 将下方的坐标轴设置到y = 0的位置
ax.spines['left'].set_position(('data', 0)) # 将左方的坐标轴设置到 x = 0 的位置
plt.show() # 显示图像
- legend图例
使用xticks()和yticks()函数替换轴标签,分别为每个函数传入两列数值。第一个列表存储刻度的位置,第二个列表存储刻度的标签。
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 100)
y = np.sin(x)
linear_y = 0.2 * x + 0.1
plt.figure(figsize = (8, 6))
# 为曲线加上标签
plt.plot(x, y, label = "y = sin(x)")
plt.plot(x, linear_y, color = "red", linestyle = '--', label = 'y = 0.2x + 0.1')
plt.title('y = sin(x) and y = 0.2x + 0.1')
plt.xlabel('x')
plt.ylabel('y')
plt.xlim(-np.pi, np.pi)
plt.ylim(-1, 1)
# plt.xticks(np.linspace(-np.pi, np.pi, 5))
x_value_range = np.linspace(-np.pi, np.pi, 5)
x_value_strs = [r'$\pi#39;, r'$-\frac{\pi}{2}#39;, r'$0#39;, r'$\frac{\pi}{2}#39;, r'$\pi#39;]
plt.xticks(x_value_range, x_value_strs)
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position(('data', 0))
ax.spines['left'].set_position(('data', 0))
# 将曲线的信息标识出来
plt.legend(loc = 'lower right', fontsize = 12)
plt.show()
legend方法中的loc 参数可选设置
位置字符串 | 位置编号 | 位置表述 |
‘best’ | 0 | 最佳位置 |
‘upper right’ | 1 | 右上角 |
‘upper left’ | 2 | 左上角 |
‘lower left’ | 3 | 左下角 |
‘lower right’ | 4 | 右下角 |
‘right’ | 5 | 右侧 |
‘center left’ | 6 | 左侧垂直居中 |
‘center right’ | 7 | 右侧垂直居中 |
‘lower center’ | 8 | 下方水平居中 |
‘upper center’ | 9 | 上方水平居中 |
‘center’ | 10 | 正中间 |
二、柱状图
使用的方法:plt.bar
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize = (16, 12))
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([3, 5, 7, 6, 2, 6, 10, 15])
plt.plot(x, y, 'r', lw = 5) # 指定线的颜色和宽度
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([13, 25, 17, 36, 21, 16, 10, 15])
plt.bar(x, y, 0.2, alpha = 1, color='b') # 生成柱状图,指明图的宽度,透明度和颜色
plt.show()
有的时候柱状图会出现在x轴的俩侧,方便进行比较,代码实现如下:
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize = (16, 12))
n = 12
x = np.arange(n) # 按顺序生成从12以内的数字
y1 = (1 - x / float(n)) * np.random.uniform(0.5, 1.0, n)
y2 = (1 - x / float(n)) * np.random.uniform(0.5, 1.0, n)
# 设置柱状图的颜色以及边界颜色
#+y表示在x轴的上方 -y表示在x轴的下方
plt.bar(x, +y1, facecolor = '#9999ff', edgecolor = 'white')
plt.bar(x, -y2, facecolor = '#ff9999', edgecolor = 'white')
plt.xlim(-0.5, n) # 设置x轴的范围,
plt.xticks(()) # 可以通过设置刻度为空,消除刻度
plt.ylim(-1.25, 1.25) # 设置y轴的范围
plt.yticks(())
# plt.text()在图像中写入文本,设置位置,设置文本,ha设置水平方向对其方式,va设置垂直方向对齐方式
for x1, y in zip(x, y2):
plt.text(x1, -y - 0.05, '%.2f' % y, ha = 'center', va = 'top')
for x1, y in zip(x, y1):
plt.text(x1, y + 0.05, '%.2f' % y, ha = 'center', va = 'bottom')
plt.show()
三、散点图
import numpy as np
import matplotlib.pyplot as plt
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = np.pi * (15 * np.random.rand(N))**2
plt.scatter(x, y, s = area,c = colors, alpha = 0.8)
plt.show()
四、等高线图
import matplotlib.pyplot as plt
import numpy as np
def f(x, y):
return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
n = 256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)
X, Y = np.meshgrid(x, y) # 生成网格坐标 将x轴与y轴正方形区域的点全部获取
line_num = 10 # 等高线的数量
plt.figure(figsize = (16, 12))
#contour 生成等高线的函数
#前俩个参数表示点的坐标,第三个参数表示等成等高线的函数,第四个参数表示生成多少个等高线
C = plt.contour(X, Y, f(X, Y), line_num, colors = 'black', linewidths = 0.5) # 设置颜色和线段的宽度
plt.clabel(C, inline = True, fontsize = 12) # 得到每条等高线确切的值
# 填充颜色, cmap 表示以什么方式填充,hot表示填充热量的颜色
plt.contourf(X, Y, f(X, Y), line_num, alpha = 0.75, cmap = plt.cm.hot)
plt.show()
五、处理图片
import matplotlib.pyplot as plt
import matplotlib.image as mpimg # 导入处理图片的库
import matplotlib.cm as cm # 导入处理颜色的库colormap
plt.figure(figsize = (16, 12))
img = mpimg.imread('image/fuli.jpg')# 读取图片
print(img) # numpy数据
print(img.shape) #
plt.imshow(img, cmap = 'hot')
plt.colorbar() # 得到颜色多对应的数值
plt.show()
[[[ 11 23 63]
[ 12 24 64]
[ 1 13 55]
...
[ 1 12 42]
[ 1 12 42]
[ 1 12 42]]
[[ 19 31 71]
[ 3 15 55]
[ 0 10 52]
...
[ 0 11 39]
[ 0 11 39]
[ 0 11 39]]
[[ 22 34 74]
[ 3 15 55]
[ 7 19 61]
...
[ 0 11 39]
[ 0 11 39]
[ 0 11 39]]
...
[[ 84 125 217]
[ 80 121 213]
[ 78 118 214]
...
[ 58 90 191]
[ 54 86 187]
[ 53 85 186]]
[[ 84 124 220]
[ 79 119 215]
[ 78 117 218]
...
[ 55 87 188]
[ 55 87 188]
[ 55 87 188]]
[[ 83 121 220]
[ 80 118 219]
[ 83 120 224]
...
[ 56 88 189]
[ 58 90 191]
[ 59 91 192]]]
(728, 516, 3)
利用numpy矩阵得到图片
import matplotlib.pyplot as plt
import matplotlib.cm as cm # 导入处理颜色的库colormap
import numpy as np
size = 8
# 得到一个8*8数值在(0, 1)之间的矩阵
a = np.linspace(0, 1, size ** 2).reshape(size, size)
plt.figure(figsize = (16, 12))
plt.imshow(a)
plt.show()
六、3D图
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # 导入Axes3D对象
fig = plt.figure(figsize = (16, 12))
ax = fig.add_subplot(111, projection = '3d') # 得到3d图像
x = np.arange(-4, 4, 0.25)
y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(x, y) # 生成网格
Z = np.sqrt(X ** 2 + Y ** 2)
# 画曲面图 # 行和列对应的跨度 # 设置颜色
ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, cmap = plt.get_cmap('rainbow'))
plt.show()
以上是matplotlib基于测试数据的数据可视化,结合实际项目中数据,代码稍加修改,即可有让人印象深刻的效果
相关推荐
- 全网第一个讲清楚CPK如何计算的Step by stepExcel和Python同时实现
-
在网上搜索CPK的计算方法,几乎全是照搬教材的公式,在实际工作做作用不大,甚至误导人。比如这个又比如这个:CPK=min((X-LSL/3s),(USL-X/3s))还有这个,很规范的公式,也很清晰很...
- [R语言] R语言快速入门教程(r语言基础操作)
-
本文主要是为了从零开始学习和理解R语言,简要介绍了该语言的最重要部分,以快速入门。主要参考文章:R-TutorialR语言程序的编写需要安装R或RStudio,通常是在RStudio中键入代码。但是R...
- Python第123题:计算直角三角形底边斜边【PythonTip题库300题】
-
1、编程试题:编写一个程序,找出已知面积和高的直角三角形的另外两边(底边及斜边)。定义函数find_missing_sides(),有两个参数:area(面积)和height(高)。在函数内,计算另外...
- Tensor:Pytorch神经网络界的Numpy
-
TensorTensor,它可以是0维、一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便。但它们也不相同,最大的区别就是Numpy...
- python多进程编程(python多进程进程池)
-
forkwindows中是没有fork函数的,一开始直接在Windows中测试,直接报错importosimporttimeret=os.fork()ifret==0:...
- 原来Python的协程有2种实现方式(python协程模型)
-
什么是协程在Python中,协程(Coroutine)是一种轻量级的并发编程方式,可以通过协作式多任务来实现高效的并发执行。协程是一种特殊的生成器函数,通过使用yield关键字来挂起函数的执行...
- ob混淆加密解密,新版大众点评加密解密
-
1目标:新版大众点评接口参数_token加密解密数据获取:所有教育培训机构联系方式获取难点:objs混淆2打开大众点评网站,点击教育全部,打开页面,切换到mobile模式,才能找到接口。打开开发者工具...
- python并发编程-同步锁(python并发和并行)
-
需要注意的点:1.线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻...
- 10分钟学会Python基础知识(python基础讲解)
-
看完本文大概需要8分钟,看完后,仔细看下代码,认真回一下,函数基本知识就OK了。最好还是把代码敲一下。一、函数基础简单地说,一个函数就是一组Python语句的组合,它们可以在程序中运行一次或多次运行。...
- Python最常见的170道面试题全解析答案(二)
-
60.请写一个Python逻辑,计算一个文件中的大写字母数量答:withopen(‘A.txt’)asfs:count=0foriinfs.read():ifi.isupper...
- Python 如何通过 threading 模块实现多线程。
-
先熟悉下相关概念多线程是并发编程的一种方式,多线程在CPU密集型任务中无法充分利用多核性能,但在I/O操作(如文件读写、网络请求)等待期间,线程会释放GIL,此时其他线程可以运行。GIL是P...
- Python的设计模式单例模式(python 单例)
-
单例模式,简单的说就是确保只有一个实例,我们知道,通常情况下类其实可以有很多实例,我们这么来保证唯一呢,全局访问。如配置管理、数据库连接池、日志处理器等。classSingleton: ...
- 更安全的加密工具:bcrypt(bcrypt加密在线)
-
作为程序员在开发工作中经常会使用加密算法,比如,密码、敏感数据等。初学者经常使用md5等方式对数据进行加密,但是作为严谨开发的程序员,需要掌握一些相对安全的加密方式,今天给大家介绍下我我在工作中使用到...
- 一篇文章搞懂Python协程(python协程用法)
-
前引之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把cpu的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线...
- Python开发必会的5个线程安全技巧
-
点赞、收藏、加关注,下次找我不迷路一、啥是线程安全?假设你开了一家包子铺,店里有个公共的蒸笼,里面放着刚蒸好的包子。现在有三个顾客同时来拿包子,要是每个人都随便伸手去拿,会不会出现混乱?比如第一个顾...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)