用于数据挖掘的化整为零策略(Split-Apply-Combine)
off999 2024-10-13 04:14 20 浏览 0 评论
在典型的探索性数据分析中,我们通过在某个粒度级别上划分数据集,然后在该粒度上聚合数据,以了解集中趋势,从而解决这个问题。同样,Hadley Wickham撰写的著名(必读)论文将Split-Apply-Combine策略概述为数据分析中最常见的策略之一。无论是营销细分还是任何行为研究,我们在分析过程中都会使用这种技术。
本文试图说明Split-Apply-Combine策略,其中我们将一个大问题分解为小的可管理部分(Split),独立操作每个部分(Apply)然后将所有部分重新组合在一起(Combine)。通过在SQL和Python中使用GroupBy函数,在Tableau中使用LOD,以及在R中使用plyr函数,许多现有工具都可以使用Split-Apply-Combine。在本文中,我们将不仅仅讨论这种策略的实现,还将看到这种策略在机器学习特征工程中的一些相关应用。
在Python中,我们使用GroupBy执行此操作,它涉及Split-Apply-Combine策略的三个步骤中的一个或多个步骤。让我们从定义以下三个步骤开始:
- Split:根据某些条件将数据拆分为组,从而创建GroupBy对象。(我们可以使用列或列的组合将数据拆分成组)
- Apply:分别对每个组应用一个函数。(在此步骤中聚合、transform或过滤数据)
- Combine:将结果组合成数据结构(Pandas系列,Pandas DataFrame)
示例数据
为了更深入,让我们创建一个虚拟数据作为示例。
以具有键值对的字典形式创建示例数据集。
为了总结整个数据,我们将使用seaborn库来创建可视化。
在创建和汇总数据之后,作为第一步,我们将继续进行Split-Apply-Combine的第一部分。
Split :
在此步骤中,我们将通过基于“颜色”列进行分组,从dataframe “data_sales”创建组。
一旦我们在dataframe上应用groupby()函数,它就会创建groupby对象。我们可以将这个对象看作是每个组的一个单独的dataframe。每个组都是基于分组列中的类别创建的(在我们的例子中,从dataframe的“colour”列中创建4个组,分别是 ‘Black’, ‘Blue’, ‘Red’, ’Yellow’ )。
GroupBy对象以键值对的形式存储各个组的数据,如dictionary中所示。要知道组名,我们可以使用attribute ' keys '或使用GroupBy对象的' groups '属性。
为了进一步明确组及其内容,我们可以运行循环并打印键值对。
通过上面的例子,我希望我们已经对GroupBy对象以及它的一些属性和方法进行了一些清晰的说明。有了这个,现在让我们继续前进到下一个阶段,即APPLY。
Apply:
Apply步骤可以通过三种方式执行:聚合,transform和过滤。
聚合:
在由多列创建的组中聚合:
通过选择多列来创建组,我们可以增加聚合的粒度。例如,在Split时,我们根据“colour”列创建了4个组,其中有4个颜色类别,因此我们有4个组。现在,如果包含'product'列,有2个类别('type A'和'type B'),以及'colour'列,那么我们将有8个类别(例如'type A-Blue', 'A-Black'..总共(4 x 2)。从下面提到的代码中可以更清楚地看出这一点。
上面的代码使用sum(),因此我们得到销售和事务的总和到由'product'和'color'列组合定义的粒度级别。
需要注意的是,我们使用了参数'as_index = True',因此我们可以看到'product'和'color'列作为索引。相反,如果我们采用与False相同的参数,那么在我们的输出中,我们不会将'product'和'color'列作为索引而是作为列。
在上面的例子中,我们只对所有列使用了单一类型的聚合函数; 但是,如果我们想要聚合具有不同聚合函数的不同列,那么我们可以使用聚合函数的自定义聚合函数。为此,我们可以将字典传递给聚合函数,将列名称称为“键”,将函数名称称为“值”。有趣的是,我们也可以将多个聚合函数传递给列。让我们看一下下面的示例代码,以便更清晰。
真实世界的聚合函数应用:
在这个例子中,我们试图找到“哪一种产品及其颜色组合的变异最小”。我们已经这样做了,根据乘积和颜色列对dataframe进行分组,然后计算每组的变异系数。下面的Python代码将使它更清晰。
transform:
变换函数在机器学习的特征工程中具有很高的潜在效用。它是与GroupBy对象一起使用的函数/方法。如果有人使用了Tableau LOD(固定)函数,那么他们将更容易理解变换函数。下图说明了使用变换函数的Split-Apply-Combine。
聚合过程中我们看到的形状输入dataframe得到减少(减少)的行数;但是,需要注意的是,在使用transform方法时,产生的输出dataframe在输出中的行数与在输入中的行数相同。输出保留了dataframe的长度,它分两个阶段进行。首先,在Apply阶段,应用了变换函数(sum();如图所示),并且在此阶段减少了行数。其次,在combine阶段,将Apply阶段的结果广播到原始粒度级别,从而产生具有与输入阶段中的dataframe的长度相同的长度的dataframe。
为了更清楚,我们可以使用我们在本文中使用的相同虚构数据集的示例代码。
从现在开始我们对转换函数有了一些了解,现在让我们谈谈它在机器学习数据清理和机器学习特征工程中的实用性。
我们可以定义一个自定义函数并使用它来转换列。例如,我们可以通过变换函数使用基于组类别的列标准化的常见示例。需要注意的是,此标准化不是直接应用于整个列,而是基于组应用于列(平均值是组平均值,std dev是组的std dev)。下面的例子将更多地阐述这个概念。
在上面的代码中,我们使用了lambda函数,在lambda函数中,我们在dataframe的每一行使用了两个方法mean和standard deviation(std)。这里可能会产生一种混淆,即“当它意图进行分组计算时,变换函数如何进行行计算?”。看下Python的示例代码。
我希望从上面的代码中可以清楚地看到转换操作。我们现在应该转到Apply部分的Filter操作。
过滤:
从名称本身可以看出,它用于从dataframe中过滤组。下面提到的Python代码说明了操作。
过滤很容易理解操作,SPLIT-APPLY-COMBINE的 APPLY部分即将结束。现在,我们将转到最后一部分,即COMBINE。
COMBINE:
在上述讨论中,联合部分已经涵盖; 但是,有一点很重要,我想分享一下。
聚合并不总是导致dataframe的创建。它主要取决于参数'as_index',如果此参数的值为'True',则它取决于我们应用聚合函数的列数。
我希望这些代码和相关讨论不仅可以帮助读者更好地直观地理解Split-Apply-Combine策略,还可以帮助读者在数据挖掘中应用这种技术。
相关推荐
- 面试官:来,讲一下枚举类型在开发时中实际应用场景!
-
一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...
- 一日一技:11个基本Python技巧和窍门
-
1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...
- Python Enum 技巧,让代码更简洁、更安全、更易维护
-
如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...
- Python元组编程指导教程(python元组的概念)
-
1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...
- 你可能不知道的实用 Python 功能(python有哪些用)
-
1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...
- Python 2至3.13新特性总结(python 3.10新特性)
-
以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...
- Python中for循环访问索引值的方法
-
技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...
- Python enumerate核心应用解析:索引遍历的高效实践方案
-
喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...
- Python入门到脱坑经典案例—列表去重
-
列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...
- Python枚举类工程实践:常量管理的标准化解决方案
-
本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...
- 让Python枚举更强大!教你玩转Enum扩展
-
为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...
- Python枚举(Enum)技巧,你值得了解
-
枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...
- 登录人人都是产品经理即可获得以下权益
-
文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...
- Python常用小知识-第二弹(python常用方法总结)
-
一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)