超强汇总:学习Python列表,只需这篇文章就够了
off999 2024-10-16 11:21 41 浏览 0 评论
千里之行,始于足下。要练成一双洞悉一切的眼睛,还是得先把基本功扎扎实实地学好。今天,本喵带大家仔细温习一下Python的列表。温故而知新,不亦说乎。
当然,温习的同时也要发散思考,因为有些看似无关紧要的、约定俗成的语言习惯,例如数组索引为何从0开始,其背后可能大有来历。知其然,亦需知其所以然啊喵喵喵~~~
最后,在基础知识之上,更要探索进阶,例如学习生成器表达式,这样既能更扎实地掌握基础,又能融会贯通,获得更全面的认知升级。
Python的列表是怎样滴?
列表(list)是一种有序的集合,可以随时添加、查找和删除元素。
列表支持加入不同数据类型的元素:数字、字符串、列表、元组等。
列表通过有序的索引可遍历所有的元素,从前往后数,索引是[0,n-1],从后往前数,索引是[-1, -n],其中n是列表的长度。
列表可以是不含元素的空列表,也可以包含超级多的元素(在内存大小支持的情况下)。
list_a = [] # 空列表,即len(list_a) == 0 list_b = [2018, 10, '2018-10-1', ['hi', 1, 2], (33, 44)] # list_b 长度为5,包含2个数字元素、1个字符串元素、1个列表元素和1个元组元素 len(list_b) == 5 list_b[0] == list_b[-5] == 2018 lits_b[3] == list_b[-2] == ['hi', 1, 2] lits_b[4] == list_b[-1] == (33, 44)
Python中怎么操作列表?
1)创建列表:
用中括号[]包裹元素,元素使用逗号分隔。
用list()方法,转化生成列表。
列表生成式/列表解析式/列表推导式,生成列表。
list_a = [1, 2, 3]
list_b = list("abc") # list_b == ['a', 'b', 'c']
list_c = list((4, 5, 6)) # list_c == [4, 5, 6]
list_d = [i for i in list_a] # list_d == [1, 2, 3]
list_e = [i*j for i in list_a for j in list_c] # list_e == [4,5,6,10,12,12,15,18]
list_f = [i*j for i,j in zip(list_a,list_c)] # list_f == [4, 10, 18]
list_g = [i for i in list_a if i%2 == 0] # list_g == [2]
?
# 结合range()函数,range(start, stop[, step])
list_h = list(range(3)) # list_h == [0, 1, 2]
list_i = list(range(3,7)) # list_i == [3, 4, 5, 6]
list_j = list(range(3,9,2)) # list_j == [3, 5, 7]
?
# 找出100以内的能够被3整除的正整数
list_k = list(range(3,100,3)) # list_k == [3, 6, 9, ..., 96, 99]
2)扩充列表:
用append()方法,在列表尾部添加单个新元素。
用insert()方法,在列表中指定位置添加元素。
用 “+” 运算符,将两个列表拼接出一个新列表。
用extend()方法,在一个列表后面拼接进另一个列表。
# 以下分别添加2个元素
list_a = []
list_a.append('happy') # list_a == ['happy']
list_a.insert(0, 'very') # list_a == ['very', 'happy']
?
# 以下两种扩充列表方式
list_1 = ['I', 'am']
list_2 = ['very', 'happy']
list_3 = list_1 + list_2 # 新列表 list_3 == ['I', 'am', 'very', 'happy']
list_1.extend(list_2) # 原列表1扩充,list_1 == ['I', 'am', 'very', 'happy']
3)删减列表与销毁列表:
用del list[m] 语句,删除指定索引m处的元素。
用remove()方法,删除指定值的元素(第一个匹配项)。
用pop()方法,取出并删除列表末尾的单个元素。
用pop(m)方法,取出并删除索引值为m的元素。
用clear()方法,清空列表的元素。(杯子还在,水倒空了)
用del list 语句,销毁整个列表。(杯子和水都没有了)
# 以下4种删除列表元素方式
list_1 = list_2 = list_3 = list_4 = ['I', 'am', 'very', 'happy']
del list_1[0] # list_1 == ['am', 'very', 'happy']
list_2.remove('I') # list_2 == ['am', 'very', 'happy']
list_3.pop() # list_3 == ['I', 'am', 'very']
list_4.pop(0) # list_4 == ['am', 'very', 'happy']
?
# 清空与销毁
list_a = [1, 2, 3]
list_b = [1, 2, 3]
list_b.clear() # list_b == []
del list_a # 没有list_a了,再使用则会报错
4)列表切片:
基本含义:从第i位索引起,向右取到后n位元素为止,按m间隔过滤
基本格式:[i : i+n : m] ;i 是切片的起始索引值,为列表首位时可省略;i+n 是切片的结束位置,为列表末位时可省略;m 可以不提供,默认值是1,不允许为0,当m为负数时,列表翻转。注意:这些值都可以大于列表长度,不会报越界。
li = [1, 4, 5, 6, 7, 9, 11, 14, 16] ? # 以下写法都可以表示整个列表,其中 X >= len(li) li[0:X] == li[0:] == li[:X] == li[:] == li[::] == li[-X:X] == li[-X:] ? li[1:5] == [4,5,6,7] # 从1起,取5-1位元素 li[1:5:2] == [4,6] # 从1起,取5-1位元素,按2间隔过滤 li[-1:] == [16] # 取倒数第一个元素 li[-4:-2] == [9, 11] # 从倒数第四起,取-2-(-4)=2位元素 li[:-2] == li[-len(li):-2] == [1,4,5,6,7,9,11] # 从头开始,取-2-(-len(li))=7位元素 ? # 注意列表先翻转,再截取 li[::-1] == [16,14,11,9,7,6,5,4,1] # 翻转整个列表 li[::-2] == [16,11,7,5,1] # 翻转整个列表,再按2间隔过滤 li[:-5:-1] == [16,14,11,9] # 翻转整个列表,取-5-(-len(li))=4位元素 li[:-5:-3] == [16,9] # 翻转整个列表,取-5-(-len(li))=4位元素,再按3间隔过滤 ? li[::0] # 报错(ValueError: slice step cannot be zero)
5) 其它操作:
用len()方法,统计全部元素的个数。
用count()方法,统计指定值的元素的个数。
用max()方法,统计元素中的最大值(要求元素类型相同;数字类型直接比较,其它类型比较id)
用min()方法,统计元素中的最小值(要求元素类型相同;数字类型直接比较,其它类型比较id)
用index()方法,查找指定值的元素的索引位置(第一个匹配项)。
用reverse()方法,翻转列表中的元素。
用copy()方法,浅拷贝并生成新的列表。
用deepcopy()方法,深拷贝并生成新的列表。
用sort()方法,在原列表基础上进行排序。
用sorted()方法,将新列表基础上对原列表的元素进行排序。
list_1 = [2018, 10, '2018-10-1', ['hi', 1, 2], (33, 44)]
len(list_1) == 5
list_1.count(10) == 1 # 元素10的数量为1
list_1.index(10) == 1 # 元素10的索引为1
list_1.reverse() # list_1 == [(33, 44), ['hi', 1, 2], '2018-10-1', 10, 2018]
?
?
# 比较浅拷贝与深拷贝
import copy
list_a = [2018, 10, '2018-10-1', ['hi', 1, 2], (33, 44)]
list_b = ['hi', 1, 2]
list_c = list_a.copy() # list_c == [2018, 10, '2018-10-1', ['hi', 1, 2], (33, 44)]
list_d = copy.deepcopy(list_a) # list_d == [2018, 10, '2018-10-1', ['hi', 1, 2], (33, 44)]
# 改变原列表中的可变对象元素
list_a[3].append('new') # list_a == [2018, 10, '2018-10-1', ['hi', 1, 2, 'new'], (33, 44)]
# 浅拷贝中的可变对象会随原列表变化而变化
list_c == [2018, 10, '2018-10-1', ['hi', 1, 2, 'new'], (33, 44)]
# 深拷贝中的可变对象不会随原列表变化而变化
list_d == [2018, 10, '2018-10-1', ['hi', 1, 2], (33, 44)]
?
?
# 比较sort() 与 sorted()
list_1 = list_2 = [2,1,4,6,5,3]
list_1.sort() # 原列表变化:list_1 == [1,2,3,4,5,6]
list_3 = sorted(list_2) # 原列表不变:list_2 == [2,1,4,6,5,3]; list_3 == [1,2,3,4,5,6]
Python列表索引为何从0始?
权威解释来自Guido van Rossum(Python之父)的博文:《Why Python uses 0-based indexing》
一句话总结:索引从0开始,切片用法很优雅。
翻译精华如下:
我决定在Python中使用0-based索引方式的一个原因,就是切片语法(slice notation)。
让我们来先看看切片的用法。可能最常见的用法,就是“取前n位元素”或“从第i位索引起,取后n位元素”(前一种用法,实际上是i==起始位的特殊用法)。如果这两种用法实现时可以不在表达式中出现难看的+1或-1,那将会非常的优雅。
使用0-based的索引方式、半开区间切片和缺省匹配区间的话(Python最终采用这样的方式),上面两种情形的切片语法就变得非常漂亮:a[:n]和a[i:i+n],前者是a[0:n]的缩略写法。
如果使用1-based的索引方式,那么,想让a[:n]表达“取前n个元素”的意思,你要么使用闭合区间切片语法,要么在切片语法中使用切片起始位和切片长度作为切片参数。半开区间切片语法如果和1-based的索引方式结合起来,则会变得不优雅。而使用闭合区间切片语法的话,为了从第i位索引开始取后n个元素,你就得把表达式写成a[i:i+n-1]。
……
特别是当两个切片操作位置邻接时,第一个切片操作的终点索引值是第二个切片的起点索引值时,太漂亮了,无法舍弃。例如,你想将一个字符串以i,j两个位置切成三部分,这三部分的表达式将会是a[:i],a[i:j]和a[j:]。
其它编程语言的索引?
索引从0开始的编程语言:C、C++、Python、Java、PHP、Ruby、Javascript...
索引从1开始的编程语言:ABC、Matlab、VB、易语言、大部分shell语言...
索引从其它值开始的编程语言:Pascal、Lua...
还有像表示星期、月份等序列结构的数据,各种编程语言也划分成了不同阵营。
它们出于何种考虑?
C语言:索引从0开始,可以大大提升内存寻址计算的效率,详细分析参考《C语言数组元素下标为何从0开始》
大部分shell语言:大多数是从1开始,来源参考stackexchange这篇问答
Pascal、Lua:默认从1开始,但支持改变起始索引值,原因据说是对非专业的开发者更友好,来源参考这篇知乎问答
以上列举的原因是最审慎的、体面的解释,话题应该到此终结,因为“索引应该从几开始最好”这个问题的破坏性不亚于“哪种编程语言是最好的”......
优雅漂亮的结尾:生成器表达式
列表生成式是一种漂亮优雅的东西,然而它有一个致命的缺点:它一次性把所有元素加载到内存中,当列表过长的时候,便会占据过多的内存资源,而且,我们通常仅需要使用少数的元素,这样未使用的元素所占据的绝大部分的内存,就成了不必要的支出。
生成器是一种更高级更优雅的东西,它使用“懒加载”的原理,并不生成完整的列表,而是迭代地、即时地、按需地生成元素,这样不仅能极大地节省内存空间,而且,在理论上,它可以生成一个无穷大的列表!
大多数生成器是以函数来实现的,然而,它并不返回(return)一个值,而是生成(yield)一个值,并挂起程序。然后,通过next()方法生成并马上返回一个元素,或者通过for循环,逐一生成和返回全部元素。
next()效率太低,且调用次数越界时会抛出StopIteration的异常,而for循环会自动捕捉这个异常,并停止调用,所以使用更佳。
# 计算斐波那契数列的生成器 def fibon(n): a = b = 1 for i in range(n): yield a # 使用yield a, b = b, a + b ? # 计算前1000000个数,通过next()函数,按顺序每次生成一个数 g = fibon(1000000) next(g) # 1 next(g) # 1 next(g) # 2 next(g) # 3 next(g) # 5 # 以此类推,但若调用超过1000000次,就会报异常StopIteration ? # 计算前1000000个数,通过for循环逐一打印生成数 for x in fibon(1000000): print(x)
生成器表达式与列表生成式极其形似,只是把[]改成了(),但背后的原理大不相同。
l = [x*2 for x in range(5)] # 列表生成式,4以内整数的2倍数 g = (x*2 for x in range(5)) # 生成器表达式 type(l) # 结果:<type 'list'> type(g) # 结果:<type 'generator'> ? print(l) # 结果:[0,2,4,6,8] print(g) # 结果:<generator object at 0x000002173F0EBC50> next(g) # 0 next(g) # 2 next(g) # 4 next(g) # 6 next(g) # 8 next(g) # Traceback (most recent call last): ....StopIteration ? for x in g: print(x, end=' ') # 结果:0 2 4 6 8
本文原创并首发于微信公众号【Python猫】,后台回复“爱学习”,免费获得20本精选电子书。
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
慕ke 前端工程师2024「完整」
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
