Python 图像处理(python 图像处理人脸融合保证肤色)
off999 2024-10-20 08:05 32 浏览 0 评论
以前照相从来没有那么容易。现在你只需要一部手机。拍照是免费的,如果我们不考虑手机的费用的话。就在上一代人之前,业余艺术家和真正的艺术家如果拍照非常昂贵,并且每张照片的成本也不是免费的。
我们拍照是为了及时保存伟大的时刻,被保存的记忆随时准备在未来被"打开"。
就像腌制东西一样,我们要注意正确的防腐剂。当然,手机也为我们提供了一系列的图像处理软件,但是一旦我们需要处理大量的照片,我们就需要其他的工具。这时,编程和Python就派上用场了。Python及其模块如Numpy、Scipy、Matplotlib和其他特殊模块提供了各种各样的函数,能够处理大量图片。
为了向你提供必要的知识,本章的Python教程将处理基本的图像处理和操作。为此,我们使用模块NumPy、Matplotlib和SciPy。
我们从scipy包misc开始。
# 以下行仅在Python notebook中需要:
%matplotlib inline
from scipy import misc
ascent = misc.ascent()
import matplotlib.pyplot as plt
plt.gray()
plt.imshow(ascent)
plt.show()
除了图像之外,我们还可以看到带有刻度的轴。这可能是非常有趣的,如果你需要一些关于大小和像素位置的方向,但在大多数情况下,你想看到没有这些信息的图像。我们可以通过添加命令plt.axis("off")来去掉刻度和轴:
from scipy import misc
ascent = misc.ascent()
import matplotlib.pyplot as plt
plt.axis("off") # 删除轴和刻度
plt.gray()
plt.imshow(ascent)
plt.show()
我们可以看到这个图像的类型是一个整数数组:
ascent.dtype
输出:
dtype('int64')
我们也可以检查图像的大小:
ascent.shape
输出:
(512,512)
misc包里还有一张浣熊的图片:
import scipy.misc
face = scipy.misc.face()
print(face.shape)
print(face.max)
print(face.dtype)
plt.axis("off")
plt.gray()
plt.imshow(face)
plt.show()
(768, 1024, 3)
<built-in method max of numpy.ndarray object at 0x7f9e70102800>
uint8
import matplotlib.pyplot as plt
matplotlib只支持png图像
img = plt.imread('frankfurt.png')
print(img[:3])
[[[ 0.41176471 0.56862748 0.80000001]
[ 0.40392157 0.56078434 0.79215688]
[ 0.40392157 0.56862748 0.79607844]
...,
[ 0.48235294 0.62352943 0.81960785]
[ 0.47843137 0.627451 0.81960785]
[ 0.47843137 0.62352943 0.82745099]]
[[ 0.40784314 0.56470591 0.79607844]
[ 0.40392157 0.56078434 0.79215688]
[ 0.40392157 0.56862748 0.79607844]
...,
[ 0.48235294 0.62352943 0.81960785]
[ 0.47843137 0.627451 0.81960785]
[ 0.48235294 0.627451 0.83137256]]
[[ 0.40392157 0.56862748 0.79607844]
[ 0.40392157 0.56862748 0.79607844]
[ 0.40392157 0.56862748 0.79607844]
...,
[ 0.48235294 0.62352943 0.81960785]
[ 0.48235294 0.62352943 0.81960785]
[ 0.48627451 0.627451 0.83137256]]]
plt.axis("off")
imgplot = plt.imshow(img)
lum_img = img[:,:,1]
print(lum_img)
[[ 0.56862748 0.56078434 0.56862748 ..., 0.62352943 0.627451
0.62352943]
[ 0.56470591 0.56078434 0.56862748 ..., 0.62352943 0.627451 0.627451 ]
[ 0.56862748 0.56862748 0.56862748 ..., 0.62352943 0.62352943
0.627451 ]
...,
[ 0.31764707 0.32941177 0.32941177 ..., 0.30588236 0.3137255
0.31764707]
[ 0.31764707 0.3137255 0.32941177 ..., 0.3019608 0.32156864
0.33725491]
[ 0.31764707 0.3019608 0.33333334 ..., 0.30588236 0.32156864
0.33333334]]
plt.axis("off")
imgplot = plt.imshow(lum_img)
色彩、色度和色调
现在,我们将展示如何给图像着色。色彩是色彩理论的一种表达,是画家常用的一种技法。想到画家而不想到荷兰是很难想象的。所以在下一个例子中,我们使用荷兰风车的图片。
windmills = plt.imread('windmills.png')
plt.axis("off")
plt.imshow(windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e77f02f98>
我们现在想给图像着色。我们用白色,这将增加图像的亮度。为此,我们编写了一个Python函数,它接受一个图像和一个百分比值作为参数。设置"百分比"为0不会改变图像,设置为1表示图像将完全变白:
import numpy as np
import matplotlib.pyplot as plt
def tint(imag, percent):
"""
imag: 图像
percent: 0,图像将保持不变,1,图像将完全变白色,值应该在0~1
"""
tinted_imag = imag + (np.ones(imag.shape) - imag) * percent
return tinted_imag
windmills = plt.imread('windmills.png')
tinted_windmills = tint(windmills, 0.8)
plt.axis("off")
plt.imshow(tinted_windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e6cd99978>
阴影是一种颜色与黑色的混合,它减少了亮度。
import numpy as np
import matplotlib.pyplot as plt
def shade(imag, percent):
"""
imag: 图像
percent: 0,图像将保持不变,1,图像将完全变黑,值应该在0~1
"""
tinted_imag = imag * (1 - percent)
return tinted_imag
windmills = plt.imread('windmills.png')
tinted_windmills = shade(windmills, 0.7)
plt.imshow(tinted_windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e6cd20048>
def vertical_gradient_line(image, reverse=False):
"""
我们创建一个垂直梯度线。形状 (1, image.shape[1], 3))
如果reverse为False,则值从0增加到1,
否则,值将从1递减到0。
"""
number_of_columns = image.shape[1]
if reverse:
C = np.linspace(1, 0, number_of_columns)
else:
C = np.linspace(0, 1, number_of_columns)
C = np.dstack((C, C, C))
return C
horizontal_brush = vertical_gradient_line(windmills)
tinted_windmills = windmills * horizontal_brush
plt.axis("off")
plt.imshow(tinted_windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e6ccb3d68>
现在,我们将通过将Python函数的reverse参数设置为“True”来从右向左着色图像:
def vertical_gradient_line(image, reverse=False):
"""
我们创建一个水平梯度线。形状 (1, image.shape[1], 3))
如果reverse为False,则值从0增加到1,
否则,值将从1递减到0。
"""
number_of_columns = image.shape[1]
if reverse:
C = np.linspace(1, 0, number_of_columns)
else:
C = np.linspace(0, 1, number_of_columns)
C = np.dstack((C, C, C))
return C
horizontal_brush = vertical_gradient_line(windmills, reverse=True)
tinted_windmills = windmills * horizontal_brush
plt.axis("off")
plt.imshow(tinted_windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e6cbc82b0>
def horizontal_gradient_line(image, reverse=False):
"""
我们创建一个垂直梯度线。形状(image.shape[0], 1, 3))
如果reverse为False,则值从0增加到1,
否则,值将从1递减到0。
"""
number_of_rows, number_of_columns = image.shape[:2]
C = np.linspace(1, 0, number_of_rows)
C = C[np.newaxis,:]
C = np.concatenate((C, C, C)).transpose()
C = C[:, np.newaxis]
return C
vertical_brush = horizontal_gradient_line(windmills)
tinted_windmills = windmills
plt.imshow(tinted_windmills)
输出:
<matplotlib.image.AxesImage at 0x7f9e6cb52390>
色调是由一种颜色与灰色的混合产生的,或由着色和阴影产生的。
charlie = plt.imread('Chaplin.png')
plt.gray()
print(charlie)
plt.imshow(charlie)
[[ 0.16470589 0.16862746 0.17647059 ..., 0. 0. 0. ]
[ 0.16078432 0.16078432 0.16470589 ..., 0. 0. 0. ]
[ 0.15686275 0.15686275 0.16078432 ..., 0. 0. 0. ]
...,
[ 0. 0. 0. ..., 0. 0. 0. ]
[ 0. 0. 0. ..., 0. 0. 0. ]
[ 0. 0. 0. ..., 0. 0. 0. ]]
输出:
<matplotlib.image.AxesImage at 0x7f9e70047668>
给灰度图像着色:http://scikit-image.org/docs/dev/auto_examples/plot_tinting_grayscale_images.html
在下面的示例中,我们将使用不同的颜色映射。颜色映射可以在matplotlib.pyplot.cm.datad中找到:
plt.cm.datad.keys()
输出:
dict_keys(['afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg', 'CMRmap', 'cool', 'copper', 'cubehelix', 'flag', 'gnuplot', 'gnuplot2', 'gray', 'hot', 'hsv', 'jet', 'ocean', 'pink', 'prism', 'rainbow', 'seismic', 'spring', 'summer', 'terrain', 'winter', 'nipy_spectral', 'spectral', 'Blues', 'BrBG', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PiYG', 'PRGn', 'PuBu', 'PuBuGn', 'PuOr', 'PuRd', 'Purples', 'RdBu', 'RdGy', 'RdPu', 'RdYlBu', 'RdYlGn', 'Reds', 'Spectral', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd', 'gist_earth', 'gist_gray', 'gist_heat', 'gist_ncar', 'gist_rainbow', 'gist_stern', 'gist_yarg', 'coolwarm', 'Wistia', 'Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c', 'Vega10', 'Vega20', 'Vega20b', 'Vega20c', 'afmhot_r', 'autumn_r', 'bone_r', 'binary_r', 'bwr_r', 'brg_r', 'CMRmap_r', 'cool_r', 'copper_r', 'cubehelix_r', 'flag_r', 'gnuplot_r', 'gnuplot2_r', 'gray_r', 'hot_r', 'hsv_r', 'jet_r', 'ocean_r', 'pink_r', 'prism_r', 'rainbow_r', 'seismic_r', 'spring_r', 'summer_r', 'terrain_r', 'winter_r', 'nipy_spectral_r', 'spectral_r', 'Blues_r', 'BrBG_r', 'BuGn_r', 'BuPu_r', 'GnBu_r', 'Greens_r', 'Greys_r', 'Oranges_r', 'OrRd_r', 'PiYG_r', 'PRGn_r', 'PuBu_r', 'PuBuGn_r', 'PuOr_r', 'PuRd_r', 'Purples_r', 'RdBu_r', 'RdGy_r', 'RdPu_r', 'RdYlBu_r', 'RdYlGn_r', 'Reds_r', 'Spectral_r', 'YlGn_r', 'YlGnBu_r', 'YlOrBr_r', 'YlOrRd_r', 'gist_earth_r', 'gist_gray_r', 'gist_heat_r', 'gist_ncar_r', 'gist_rainbow_r', 'gist_stern_r', 'gist_yarg_r', 'coolwarm_r', 'Wistia_r', 'Accent_r', 'Dark2_r', 'Paired_r', 'Pastel1_r', 'Pastel2_r', 'Set1_r', 'Set2_r', 'Set3_r', 'tab10_r', 'tab20_r', 'tab20b_r', 'tab20c_r', 'Vega10_r', 'Vega20_r', 'Vega20b_r', 'Vega20c_r'])
import numpy as np
import matplotlib.pyplot as plt
charlie = plt.imread('Chaplin.png')
# colormaps plt.cm.datad
# cmaps = set(plt.cm.datad.keys())
cmaps = {'afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg',
'CMRmap', 'cool', 'copper', 'cubehelix', 'Greens'}
X = [ (4,3,1, (1, 0, 0)), (4,3,2, (0.5, 0.5, 0)), (4,3,3, (0, 1, 0)),
(4,3,4, (0, 0.5, 0.5)), (4,3,(5,8), (0, 0, 1)), (4,3,6, (1, 1, 0)),
(4,3,7, (0.5, 1, 0) ), (4,3,9, (0, 0.5, 0.5)),
(4,3,10, (0, 0.5, 1)), (4,3,11, (0, 1, 1)), (4,3,12, (0.5, 1, 1))]
fig = plt.figure(figsize=(6, 5))
#fig.subplots_adjust(bottom=0, left=0, top = 0.975, right=1)
for nrows, ncols, plot_number, factor in X:
sub = fig.add_subplot(nrows, ncols, plot_number)
sub.set_xticks([])
plt.colors()
sub.imshow(charlie*0.0002, cmap=cmaps.pop())
sub.set_yticks([])
#fig.show()
相关推荐
- 推荐一款Python的GUI可视化工具(python 可视化工具)
-
在Python基础语法学习完成后,进一步开发应用界面时,就需要涉及到GUI了,GUI全称是图形用户界面(GraphicalUserInterface,又称图形用户接口),采用图形方式显示的计算机操...
- 教你用Python绘制谷歌浏览器的3种图标
-
前两天在浏览matplotlib官方网站时,笔者无意中看到一个挺有意思的图片,就是用matplotlib制作的火狐浏览器的logo,也就是下面这个东东(网页地址是https://matplotlib....
- 小白学Python笔记:第二章 Python安装
-
Windows操作系统的python安装:Python提供Windows、Linux/UNIX、macOS及其他操作系统的安装包版本,结合自己的使用情况,此处仅记录windows操作系统的python...
- Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字
-
Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字一、项目功能利用Tkinter组件中的Canvas绘制图形和文字。二、项目分析要在窗体中绘制图形和文字,需先导入Tkinter组...
- 一文吃透Python虚拟环境(python虚拟环境安装和配置)
-
摘要在Python开发中,虚拟环境是一种重要的工具,用于隔离不同项目的依赖关系和环境配置。本文将基于windows平台介绍四种常用的Python虚拟环境创建工具:venv、virtualenv、pip...
- 小白也可以玩的Python爬虫库,收藏一下
-
最近,微软开源了一个项目叫「playwright-python」,作为一个兴起项目,出现后受到了大家热烈的欢迎,那它到底是什么样的存在呢?今天为你介绍一下这个传说中的小白神器。Playwright是...
- python环境安装+配置教程(python安装后怎么配置环境变量)
-
安装python双击以下软件:弹出一下窗口需选择一些特定的选项默认选项不需要更改,点击next勾选以上选项,点击install进度条安装完毕即可。到以下界面,证明安装成功。接下来安装库文件返回电脑桌面...
- colorama,一个超好用的 Python 库!
-
大家好,今天为大家分享一个超好用的Python库-colorama。Github地址:https://github.com/tartley/coloramaPythoncolorama库是一...
- python制作仪表盘图(python绘制仪表盘)
-
今天教大家用pyecharts画仪表盘仪表盘(Gauge)是一种拟物化的图表,刻度表示度量,指针表示维度,指针角度表示数值。仪表盘图表就像汽车的速度表一样,有一个圆形的表盘及相应的刻度,有一个指针...
- 总结90条写Python程序的建议(python写作)
-
1.首先 建议1、理解Pythonic概念—-详见Python中的《Python之禅》 建议2、编写Pythonic代码 (1)避免不规范代码,比如只用大小写区分变量、使用容易...
- [oeasy]python0137_相加运算_python之禅_import_this_显式转化
-
变量类型相加运算回忆上次内容上次讲了是从键盘输入变量input函数可以有提示字符串需要有具体的变量接收输入的字符串输入单个变量没有问题但是输入两个变量之后一相加就非常离谱添加图片注释,不超过1...
- Python入门学习记录之一:变量(python中变量的规则)
-
写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...
- 掌握Python的"魔法":特殊方法与属性完全指南
-
在Python的世界里,以双下划线开头和结尾的"魔法成员"(如__init__、__str__)是面向对象编程的核心。它们赋予开发者定制类行为的超能力,让自定义对象像内置类型一样优雅工...
- 11个Python技巧 不Pythonic 实用大于纯粹
-
虽然Python有一套强大的设计哲学(体现在“Python之禅”中),但总有一些情况需要我们“打破规则”来解决特定问题。这触及了Python哲学中一个非常核心的理念:“实用主义胜于纯粹主义”...
- Python 从入门到精通 第三课 诗意的Python之禅
-
导言:Python之禅,英文名是TheZenOfPython。最早由TimPeters在Python邮件列表中发表,它包含了影响Python编程语言设计的20条软件编写原则。它作为复活节彩蛋...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)