一种简单而智能的方法:Python也能进行面部识别
off999 2024-10-20 08:08 23 浏览 0 评论
全文共2841字,预计学习时长8分钟
本文将介绍图像处理中的一些重要概念,除了具体解释每个步骤之外,还将提供一个在Python中使用Cv2和DLib库轻松进行人脸识别的项目。
感兴趣区域
在使用图像进行面部分析时,最重要的概念之一是定义感兴趣区域(ROI),我们必须在图像中定义一个特定的部分,在那里筛选或执行一些操作。
例如,如果我们需要筛选汽车的车牌,我们的感兴趣领域只停留在车牌上,那么街道、车身和图片中出现的任何东西都只是辅助部分。在本例中,我们将使用opencv库,该库支持对图像进行分区并帮助我们确定感兴趣领域。
Haar库
本项目中将使用现成的分类器:级联的Haar分类器,这种特定的分类器将始终适用于灰度图像。
该算法生成了一个几何图形,该几何图形将识别与我们所分析的相似点。因此在本例中,它将尝试寻找人脸图案,即眼睛、鼻子和嘴巴。这种分析方法最大的问题是产生幻想性视错觉。
你看到的是人眼还是几扇窗户?在希腊词源学中,幻想性视错觉是一种人类的特征。从童年起,我们的大脑就被编程来识别物体、图像中的人脸。利用我们先前获得的经验,我们自己的大脑会根据我们所认识到的“人类”特征来寻找一种模式,增加新的人脸面孔。
使用Haar人脸特征分类器
用以下图像为例:
来看看识别这张图片中的人脸代码:
import cv2
group_of_people_image = cv2.imread('images/image7.jpg')
frontal_face_classifier = cv2.CascadeClassifier('classifier/haarcascade_frontalface_default.xml')
image_in_gray_scale = cv2.cvtColor(group_of_people_image,cv2.COLOR_BGR2GRAY)
faces = frontal_face_classifier.detectMultiScale(image=image_in_gray_scale,scaleFactor=1.3, minNeighbors=6)
for (x_axis, y_axis, weight,height) in faces:
cv2.rectangle(group_of_people_image,(x_axis, y_axis), (x_axis + weight, y_axis + height), (255, 0, 0), 2)
该算法将图像转换为灰度图像,如前所述,这是分类器操作的一个基本步骤,然后我们使用dectedMultiScale函数搜索图像中的人脸,并通过绘制矩形来显示图像的位置,当定位人脸时结果如下:
我们能够准确地分析两张出现的脸(采用矩形的方式将人脸框起来),有两个人完全正面地露出他们的脸,人脸完全显现,所以我们可以清楚地看到他的脸;另一个人只露出了面部的一部分,所以我们没有得到准确的信息来确认这是一张完整的人脸。
面部特征检测
Dlib是一个拥有一些分类器的库,可以帮助我们检测人脸的某些部分,例如:眼睛、眉毛、鼻子和洋娃娃的区域。以下图为例:
现在,使用算法来识别图像中的面部特征点:
import cv2
import dlib
import numpy as np
initial_image = cv2.imread('images/image9.jpg')
initial_image_in_rgb = cv2.cvtColor(initial_image,cv2.COLOR_BGR2RGB)
reference_image = initial_image_in_rgb.copy()
classifier_path = dlib.shape_predictor('classifier/shape_predictor_68_face_landmarks.dat')
frontal_face_detector = dlib.get_frontal_face_detector()
rectangles =frontal_face_detector(initial_image,1)
for k, d inenumerate(rectangles):
cv2.rectangle(reference_image,(d.left(), d.top()), (d.right(), d.bottom()), (255, 255, 0), 2)
landmarks = []
for rectangle in rectangles:
landmarks.append(np.matrix([[p.x, p.y] for p inclassifier_path(reference_image,rectangle).parts()]))
for landmark in landmarks:
for index, point inenumerate(landmark):
point_center = (point[0, 0], point[0, 1])
cv2.circle(reference_image,point_center, 3, (255, 255, 0), -1)
cv2.putText(reference_image,str(index), point_center, cv2.FONT_HERSHEY_COMPLEX, 3, (255, 255, 255), 2)
我们使用的是人脸68个特征分类器,它试图更精确地理解点面,这给了我们更多的选择去分析结果,其缺点是速度有点慢。所以必须划定一个矩形来确定我们的脸可能在哪里,特征是我们可以识别的人脸特征,包括脸、嘴、眼睛、眉毛。
一旦用矩形的方式框出了脸,就可以使用功能部件将这些特征返回,最后将得到一些可视化的东西去生成一个带有面部点的图像。结果是:
这些点对于帮助识别表情很重要,例如我们可以识别出这个男孩睁着眼睛,闭着嘴巴。把这看作是一种情绪的表现,可以说这个男孩很焦虑。当一个人微笑时,它可以帮助理解这种情绪可能表达的是幸福。
上述例子向我们展示了,Python可以识别出我们感兴趣的区域,在本文中就是人脸识别。这个项目还可以扩展到使用机器学习来检测,探究图像中的人是否感到快乐、悲伤或者忧虑。
包含所有内容的项目可从以下网址获得:https://github.com/LimaGuilherme/facial-recognize
留言点赞关注
我们一起分享AI学习与发展的干货
如转载,请后台留言,遵守转载规范
相关推荐
- 面试官:来,讲一下枚举类型在开发时中实际应用场景!
-
一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...
- 一日一技:11个基本Python技巧和窍门
-
1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...
- Python Enum 技巧,让代码更简洁、更安全、更易维护
-
如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...
- Python元组编程指导教程(python元组的概念)
-
1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...
- 你可能不知道的实用 Python 功能(python有哪些用)
-
1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...
- Python 2至3.13新特性总结(python 3.10新特性)
-
以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...
- Python中for循环访问索引值的方法
-
技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...
- Python enumerate核心应用解析:索引遍历的高效实践方案
-
喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...
- Python入门到脱坑经典案例—列表去重
-
列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...
- Python枚举类工程实践:常量管理的标准化解决方案
-
本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...
- 让Python枚举更强大!教你玩转Enum扩展
-
为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...
- Python枚举(Enum)技巧,你值得了解
-
枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...
- 登录人人都是产品经理即可获得以下权益
-
文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...
- Python常用小知识-第二弹(python常用方法总结)
-
一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)