10行代码实现人脸识别(基于opencv实现的人脸识别代码)
off999 2024-10-20 08:09 28 浏览 0 评论
什么是人脸识别
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
目前的人脸识别技术已经非常成熟了,还发展成3D人脸识别。而且现在各大厂商也都提供了人脸识别的API接口供我们调用,可以说几行代码就可以完成人脸识别。但是人脸识别的根本还是基于图像处理。在Python中最强大的图像处理库就是OpenCV。
OpenCV简介
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
OpenCV基本使用
安装
pip install opencv-python # 基础库
pip install opencv-contrib-python # 扩展库
pip install opencv-python-headless
读取图片
读取和显示图片是最基本的操作了,OpenCV当中使用imread和imshow实现该操作
import cv2 as cv
# 读取图片,路径不能含有中文名,否则图片读取不出来
image = cv.imread('1111.jpg')
# 显示图片
cv.imshow('image', image)
# 等待键盘输入,单位是毫秒,0表示无限等待
cv.waitKey(0)
# 因为最终调用的是C++对象,所以使用完要释放内存
cv.destroyAllWindows()
将图片转为灰度图
OpenCV中数百中关于不同色彩控件之间转换的方法。目前最常用的有三种:灰度、BGR、HSV。
- 灰度色彩空间是通过去除彩色信息来讲图片转换成灰阶,灰度图会大量减少图像处理中的色彩处理,对人脸识别很有效。
- BGR每个像素都由一个三元数组来表示,分别代码蓝、绿、红三种颜色。python中还有一个库PIL,读取的图片通道是RGB,其实是一样的,只是颜色顺序不一样
- HSV,H是色调,S是饱和度,V是黑暗的程度
将图片转换为灰度图
import cv2 as cv
# 读取图片,路径不能含有中文名,否则图片读取不出来
image = cv.imread('1111.jpg')
# cv2读取图片的通道是BGR,
# PIL读取图片的通道是RGB
# code选择COLOR_BGR2GRAY,就是BGR to GRAY
gray_image = cv.cvtColor(image, code=cv.COLOR_BGR2GRAY)
# 显示图片
cv.imshow('image', gray_image)
# 等待键盘输入,单位是毫秒,0表示无限等待
cv.waitKey(0)
# 因为最终调用的是C++对象,所以使用完要释放内存
cv.destroyAllWindows()
绘制矩形
image = cv.imread('1111.jpg')
x, y, w, h = 50, 50, 80, 80
# 绘制矩形
cv.rectangle(image, (x, y, x+w, y+h), color=(0, 255, 0), thickness=2)
# 绘制圆形
cv.circle(image, center=(x + w//2, y + h//2), radius=w//2, color=(0, 0, 255), thickness=2)
cv.imshow('image', image)
cv.waitKey(0)
cv.destroyAllWindows()
人脸检测
人脸检测实际上是对图像提取特征,Haar特征是一种用于实现实时人脸跟踪的特征。每个Haar特征都描述了相邻图像区域的对比模式。比如边、定点和细线都能生成具有判别性的特征。OpenCV给我们提供了Haar特征数据,在cv2/data目录下,使用特征数据的方法def detectMultiScale(self, image, scaleFactor=None, minNeighbors=None, flags=None, minSize=None, maxSize=None)
- scaleFactor: 指定每个图像比例缩小多少图像
- minNeighbors: 指定每个候选矩形必须保留多少个邻居,值越大说明精度要求越高
- minSize:检测到的最小矩形大小
- maxSize: 检测到的最大矩形大小
检测图片中人脸
import os
import cv2 as cv
def face_detect_demo(image):
# 将图片转换为灰度图
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# 加载特征数据
face_detector = cv.CascadeClassifier(os.path.join(cv.data.haarcascades, 'haarcascade_frontalface_default.xml'))
faces = face_detector.detectMultiScale(gray)
for x, y, w, h in faces:
cv.rectangle(image, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
# 读取图片,路径不能含有中文名,否则图片读取不出来
image = cv.imread('2222.jpg')
face_detect_demo(image)
# 显示图片
cv.imshow('image', image)
# 等待键盘输入,单位是毫秒,0表示无限等待
cv.waitKey(0)
# 因为最终调用的是C++对象,所以使用完要释放内存
cv.destroyAllWindows()
采用默认参数,检测人脸数据不全,需要调整detectMultiScale函数的参数,调整为faces = face_detector.detectMultiScale(gray, scaleFactor=1.02, minNeighbors=3)
我们发现除了检测到人脸数据,还有一些其他的脏数据,这个时候可以打印检测出的人脸数据位置和大小
faces = face_detector.detectMultiScale(gray, scaleFactor=1.02, minNeighbors=3)
for x, y, w, h in faces:
print(x, y, w, h) # 打印每一个检测到的数据位置和大小
cv.rectangle(image, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
从大小中我们看到最大的两个矩形,刚好是人脸数据,其余都是脏数据,那么继续修改函数参数faces = face_detector.detectMultiScale(gray, scaleFactor=1.02, minNeighbors=3, minSize=(80, 80))
检测视频中人脸
视频就是一张一张的图片组成的,在视频的帧上面重复这个过程就能完成视频中的人脸检测了。视频读取OpenCV为我们提供了函数VideoCapture,参数可以是视频文件或者0(表示调用摄像头)
import cv2 as cv
# 人脸检测
def face_detect_demo(image):
try:
# 将图片转换为灰度图
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# 加载特征数据
face_detector = cv.CascadeClassifier(os.path.join(cv.data.haarcascades, 'haarcascade_frontalface_default.xml'))
faces = face_detector.detectMultiScale(gray)
for x, y, w, h in faces:
print(x, y, w, h)
cv.rectangle(image, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
except Exception as e:
pass
cap = cv.VideoCapture('人脸识别.mp4')
while cap.isOpened():
flag, frame = cap.read()
face_detect_demo(frame)
cv.imshow('result', frame)
if ord('q') == cv.waitKey(5):
break
cap.realse()
cv.destroyAllWindows()
这个我们是做的人脸识别,怎么把爱好都识别了,这么先进吗?很显然这不太符合我们的要求,爱好只能藏在心里,你给我检测出来就不行了。所以我们必须要进行优化处理。OpenCV为我们提供了一个机器学习的小模块,我们可以训练它,让它只识别我们需要的部分,不要乱猜测。
训练数据
训练数据就是我们把一些图片交给训练模型,让模型熟悉她,这样它就能更加准确的识别相同的图片。训练的数据一般我们可以从网上搜索:人脸识别数据库,或者从视频中保存美帧的数据作为训练集。所有的人脸识别算法在他们的train()函数中都有两个参数:图像数组和标签数组。这些标签标示进行识别时候的人脸ID,根据ID可以知道被识别的人是谁。
获取训练集
从视频中每隔5帧截取一个图片,保存成图片
import cv2
cap = cv2.VideoCapture('人脸识别.mp4')
number = 100
count = 1
while cap.isOpened() and number > 0:
flag, frame = cap.read()
if not flag:
break
if count % 5 == 0:
# 按照视频图像中人脸的大体位置进行裁剪,只取人脸部分
img = frame[70:280, 520:730]
cv2.imwrite('data/{}.png'.format(number), img)
number -= 1
count += 1
cap.release()
cv2.destroyAllWindows()
使用LBPH训练模型
def getImageAndLabels(path_list):
faces = []
ids = []
image_paths = [os.path.join(path_list, f) for f in os.listdir(path_list) if f.endswith('.png')]
face_detector = cv.CascadeClassifier(os.path.join(cv.data.haarcascades, 'haarcascade_frontalface_default.xml'))
for image in image_paths:
img = cv.imread(image)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray)
_id = int(os.path.split(image)[1].split('.')[0])
for x, y, w, h in faces:
faces.append(gray[y:y+h, x:x+w])
ids.append(_id)
return faces, ids
faces, ids = getImageAndLabels('data')
# 训练
recognizer = cv.face.LBPHFaceRecognizer_create()
recognizer.train(faces, np.array(ids))
# 保存训练特征
recognizer.write('trains/trains.yml')
基于LBPH的人脸识别
LBPH将检测到的人脸分为小单元,并将其与模型中的对应单元进行比较,对每个区域的匹配值产生一个直方图。调整后的区域中调用predict函数,该函数返回两个元素的数组,第一个元素是所识别的个体标签,第二个元素是置信度评分。所有的算法都有一个置信度评分阈值,置信度评分用来衡量图像与模型中的差距,0表示完全匹配。LBPH有一个好的识别参考值要低于50。基本步骤为:
- cv.VideoCapture读取视频
- Haar算法检测人脸数据
- 基于LBPH训练集得到准确人脸数据,并输出标记此人是谁
- 按置信度取准确度高的人脸标记出来
import os
import cv2 as cv
def face_detect_demo(image):
try:
global number
# 将图片转换为灰度图
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# 加载特征数据
faces = face_detector.detectMultiScale(gray, scaleFactor=1.02, minNeighbors=3)
for x, y, w, h in faces:
# 获取置信度,大于80表示取值错误
_id, confidence = recognizer.predict(gray[y:y + h, x:x + w])
if confidence < 80:
cv.rectangle(image, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
except Exception as e:
pass
def check_face():
cap = cv.VideoCapture('人脸识别.mp4')
while cap.isOpened():
flag, frame = cap.read()
if not flag:
break
face_detect_demo(frame)
cv.imshow('img', frame)
cv.waitKey(2)
cv.destroyAllWindows()
if __name__ == '__main__':
# 加载训练数据文件
recognizer = cv.face.LBPHFaceRecognizer_create()
recognizer.read('trains/trains.yml')
face_detector = cv.CascadeClassifier(os.path.join(cv.data.haarcascades, 'haarcascade_frontalface_default.xml'))
check_face()
总结
通过上面一步步的学习,你是不是对OpenCV人脸识别有个基本的认识了呢?但是我们也看到了,整个人脸识别的主要算法还是基于Haar,而且准确度并不是特别高,主要是会检测出很多非人脸的数据。LBPH是让我们给某个人脸进行标记,告诉我们他是谁,并没有提高实际的检测准确度。现在机器学习是非常火爆的,基于OpenCV的机器学习人脸识别也精确度也很高,下次我们在来对比几种机器学习人脸识别的库。
相关推荐
- 面试官:来,讲一下枚举类型在开发时中实际应用场景!
-
一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...
- 一日一技:11个基本Python技巧和窍门
-
1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...
- Python Enum 技巧,让代码更简洁、更安全、更易维护
-
如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...
- Python元组编程指导教程(python元组的概念)
-
1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...
- 你可能不知道的实用 Python 功能(python有哪些用)
-
1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...
- Python 2至3.13新特性总结(python 3.10新特性)
-
以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...
- Python中for循环访问索引值的方法
-
技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...
- Python enumerate核心应用解析:索引遍历的高效实践方案
-
喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...
- Python入门到脱坑经典案例—列表去重
-
列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...
- Python枚举类工程实践:常量管理的标准化解决方案
-
本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...
- 让Python枚举更强大!教你玩转Enum扩展
-
为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...
- Python枚举(Enum)技巧,你值得了解
-
枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...
- 登录人人都是产品经理即可获得以下权益
-
文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...
- Python常用小知识-第二弹(python常用方法总结)
-
一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)