百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

numpy基础之创建数组的函数(创建numpy数组的函数有哪些)

off999 2024-10-24 12:30 25 浏览 0 评论

1 numpy基础之创建数组的函数

python数据分析的numpy库提供多种函数创建数组。

NO

函数

描述

1

array

将输入数据转为ndarray

2

asarray

将输入数据转为ndarray,如果输入本身是ndarray则不进行复制。

3

arange

类似内置range,返回ndarray

4

ones

根据shape和dtype创建全1的ndarray。

5

ones_like

根据另一个数组的shape和dtype创建全1的ndarray。

6

zeros

根据shape和dtype创建全0的ndarray。

7

zeros_like

根据另一个数组的shape和dtype创建全0的ndarray。

8

full

根据shape和dtype使用fill value的全部值创建ndarray。

9

full_like

根据另一个数组的shape和dtype使用fill value的全部值创建ndarray。

10

eye

创建一个正方的N*N矩阵,对角线为1,其余为0.


1.1 array

用法

 import numpy as np
 np.array
 (object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0,like=None)

描述

按照指定入参将object转换为ndarray多维数组。

object:必选,可以是列表、元组、数组等。

示例

 >>> import numpy as np
 >>> list1=[1,2,3]
 >>> ar1=np.array(list1)
 >>> ar1
 array([1, 2, 3])

1.2 asarray

用法

 asarray(a, dtype=None, order=None, *, like=None)

描述

numpy.asarray(),将输入数据转为ndarray,如果输入本身是ndarray则不进行复制。

a:输入数据,可以是元组、列表、ndarray等;

dtype:数据类型;

输入数据非ndarray,则array()和asarray()都进行复制再转换为ndarray。

输入数据为ndarray,则array()默认复制再转为ndarray,asarray()不复制直接转为ndarray。

输入数据为ndarray时,array()通过copy=False不复制直接转为ndarray。

不复制时,ndarray与输入数据指向相同内存地址的同一个对象。

示例

 >>> import numpy as np
 >>> list1=[1,2,3]
 # array()输入数据为列表
 >>> ar1=np.array(list1)
 # asarray()输入数据为列表
 >>> ar2=np.asarray(list1)
 # array() 和 asarray() 
 # 输入数据非ndarray时,进行复制后转为ndarray
 >>> id(list1),id(ar1),id(ar2)
 (2181842186048, 2181842373680, 2181842498064)
 # id获取对象内存地址,三者都指向各自地址
 >>> id(ar1)==id(list1),id(ar2)==id(list1)
 (False, False)
 >>> ar1 is list1,ar2 is list1
 (False, False)
 >>> list1,ar1,ar2
 ([1, 2, 3], array([1, 2, 3]), array([1, 2, 3]))
 # 修改 list1的元素后,ar1和ar2不变
 >>> list1[0]=11
 >>> list1,ar1,ar2
 ([11, 2, 3], array([1, 2, 3]), array([1, 2, 3]))
 
 >>> list1=[1,2,3]
 >>> ar1=np.array(list1)
 # array()输入数据为ndarray,进行复制后转为ndarray
 >>> ar2=np.array(ar1)
 # asarray()输入数据为ndarray,不进行复制直接转为ndarray
 >>> ar3=np.asarray(ar1)
 # ar1 和 ar3 指向同一个对象地址
 >>> id(ar1),id(ar2),id(ar3)
 (2181842497968, 2181842497872, 2181842497968)
 >>> id(ar1)==id(ar2),id(ar1)==id(ar3)
 (False, True)
 >>> ar2 is ar1,ar3 is ar1
 (False, True)
 >>> ar1,ar2,ar3
 (array([1, 2, 3]), array([1, 2, 3]), array([1, 2, 3]))
 # 修改 ar1 的元素后,ar2不变 , ar3改变
 >>> ar1[0]=11
 >>> ar1,ar2,ar3
 (array([11,  2,  3]), array([1, 2, 3]), array([11,  2,  3]))
 
 >>> list1=[1,2,3]
 >>> ar1=np.array(list1)
 >>> ar1 is list1
 False
 # array()的copy入参,控制是否复制输入数据
 # 输入数据为非ndarray时,copy不生效
 >>> ar1=np.array(list1,copy=False)
 >>> ar1 is list1
 False
 >>> ar2=np.array(ar1)
 >>> ar2 is ar1
 False
 # 输入数据为ndarray时,copy生效 ,和输入数据指向同一对象
 >>> ar2=np.array(ar1,copy=False)
 >>> ar2 is ar1
 True

1.3 arange

用法

 arange([start,] stop[, step,], dtype=None, *, like=None)

描述

numpy.arange()类似python的内置函数range(),通过开始值、结束值、步长创建表示等差数列的一维数组,返回给定间隔内的均匀间隔值,不包括结束值。

start:开始值,可选,默认0;

stop:结束值,必选,数组元素不包括结束值;

step:步长,可选,默认1;

示例

 >>> import numpy as np
 >>> np.arange(3) # 只有1个入参表示结束值
 array([0, 1, 2])
 # 开始值为5,结束值为10(不包括10),步长为1
 >>> np.arange(5,10)
 array([5, 6, 7, 8, 9])
 # 开始值为5,结束值为10(不包括10),步长为2
 >>> np.arange(5,10,2)
 array([5, 7, 9])
 # 开始值为11,结束值为5(不包括5),步长为-2
 >>> np.arange(11,5,-2)
 array([11,  9,  7])

1.4 ones

用法

 ones(shape, dtype=None, order='C', *, like=None)

描述

numpy.ones()根据shape和dtype创建全1的ndarray数组。

shape:必选,整数或整数序列,指定各轴大小。整数则对应一维数组。

dtype:可选,数据类型。

示例

 >>> import numpy as np
 # numpy.ones()根据shape和dtype创建全1的ndarray数组。
 # ones(shape, dtype=None, order='C', *, like=None)
 # shape: 指定各轴大小,为整数或整数序列
 # 只有1个轴(一维)时,shape轴大小 (n,) 可以简写为 n
 >>> ar1=np.ones(5)  # 一维时shape为整数
 >>> ar2=np.ones((5,)) # 一维时shape为单元素元组
 >>> ar3=np.ones([5]) # 一维时shape为单元素列表
 >>> ar1
 array([1., 1., 1., 1., 1.])
 >>> ar2
 array([1., 1., 1., 1., 1.])
 >>> ar3
 array([1., 1., 1., 1., 1.])
 >>> ar1.dtype
 dtype('float64')
 # shape=(2,3),创建2个轴的元组,
 # 外层轴大小为2,内层轴大小为3
 >>> ar5=np.ones((2,3),dtype=int)
 >>> ar5
 array([[1, 1, 1],
        [1, 1, 1]])
 

1.5 ones_like

用法

 ones_like(a, dtype=None, order='K', subok=True, shape=None)

描述

numpy.ones_like()根据另一个数组的shape和dtype创建全1的ndarray。

a:必选,输入数据,可以是元组、列表、ndarray等;

dtype:可选,数据类型。

示例

 >>> import numpy as np
 >>> ar1=np.arange(5,10)
 >>> ar1
 array([5, 6, 7, 8, 9])
 >>> ar2=np.ones_like(ar1)
 >>> ar2
 array([1, 1, 1, 1, 1])
 >>> ar3=np.array([[1,2,3],[4,5,6]])
 >>> ar3
 array([[1, 2, 3],
        [4, 5, 6]])
 # 创建与ar3有相同shape的全1二维数组
 >>> ar5=np.ones_like(ar3)
 >>> ar5
 array([[1, 1, 1],
        [1, 1, 1]])
 

1.6 zeros

用法

 zeros(shape, dtype=float, order='C', *, like=None)

描述

numpy.zeros()根据shape和dtype创建全0的ndarray数组。

shape:必选,整数或整数序列,指定各轴大小。整数则对应一维数组。

dtype:可选,数据类型。


示例

 >>> import numpy as np
 >>> ar1=np.zeros(5)# shape整数创建一维全0数组
 >>> ar2=np.zeros((5,))# shape单元素元组创建一维全0数组
 >>> ar3=np.zeros([5])# shape单元素列表创建一维全0数组
 >>> ar1
 array([0., 0., 0., 0., 0.])
 >>> ar2
 array([0., 0., 0., 0., 0.])
 >>> ar3
 array([0., 0., 0., 0., 0.])
 >>> ar5=np.zeros((2,3),'int32')# 创建2行3列全0数组
 >>> ar5
 array([[0, 0, 0],
        [0, 0, 0]])

1.7 zeros_like

用法

 zeros_like(a, dtype=None, order='K', subok=True, shape=None)

描述

numpy.zeros_like()根据另一个数组的shape和dtype创建全0的ndarray。

a:必选,输入数据,可以是元组、列表、ndarray等;

dtype:可选,数据类型。

示例

 >>> import numpy as np
 >>> ar1=np.arange(5,10)
 >>> ar1
 array([5, 6, 7, 8, 9])
 >>> ar2=np.zeros_like(ar1)
 >>> ar2
 array([0, 0, 0, 0, 0])
 >>> ar3=np.array([[1,2,3],[4,5,6]])
 >>> ar3
 array([[1, 2, 3],
        [4, 5, 6]])
 # 创建与ar3有相同shape的全0二维数组
 >>> ar5=np.zeros_like(ar3)
 >>> ar5
 array([[0, 0, 0],
        [0, 0, 0]])

1.8 full

用法

 full(shape, fill_value, dtype=None, order='C', *, like=None)

描述

numpy.full()根据shape和dtype使用fill value的全部值创建ndarray数组。

示例

 >>> import numpy as np
 >>> ar1=np.full((2,3),[1,2,3])
 >>> ar1
 array([[1, 2, 3],
        [1, 2, 3]])
 >>> ar2=np.full((2,3),'梯阅线条')
 >>> ar2
 array([['梯阅线条', '梯阅线条', '梯阅线条'],
        ['梯阅线条', '梯阅线条', '梯阅线条']], dtype='<U4')

1.9 full_like

用法

 full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None)

描述

numpy.full_like()根据另一个数组的shape和dtype使用fill value的全部值创建ndarray数组。

示例

 >>> import numpy as np
 >>> ar1=np.arange(6)
 >>> ar1
 array([0, 1, 2, 3, 4, 5])
 >>> ar2=np.full_like(ar1,2)
 >>> ar2
 array([2, 2, 2, 2, 2, 2])
 

1.10eye

用法

 eye(N, M=None, k=0, dtype=<class 'float'>, order='C', *, like=None)

描述

np.ery()生成对角线为1,其余为0的二维数组(即单位矩阵)。

N:二维数组的行数;

M:二维数组的列数,默认等于M;

K:对角线索引,默认0为主对角线,正为右上对角线(右移),负为左下对角线(下移)。

示例

 >>> import numpy as np
 >>> ar1=np.eye(2,dtype='int32')
 >>> ar1
 array([[1, 0],
        [0, 1]])
 >>> ar2=np.eye(3,5,dtype='int32')
 >>> ar2
 array([[1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0],
        [0, 0, 1, 0, 0]])
 >>> ar3=np.eye(5,dtype='int32')
 # k=0,主对角线
 >>> ar3
 array([[1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0],
        [0, 0, 1, 0, 0],
        [0, 0, 0, 1, 0],
        [0, 0, 0, 0, 1]])
 >>> ar5=np.eye(5,k=1,dtype='int32')
 # k>0,右上角对角线,对角线右移
 >>> ar5
 array([[0, 1, 0, 0, 0],
        [0, 0, 1, 0, 0],
        [0, 0, 0, 1, 0],
        [0, 0, 0, 0, 1],
        [0, 0, 0, 0, 0]])
 >>> ar6=np.eye(5,k=2,dtype='int32')
 >>> ar6
 array([[0, 0, 1, 0, 0],
        [0, 0, 0, 1, 0],
        [0, 0, 0, 0, 1],
        [0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0]])
 >>> ar8=np.eye(5,k=-1,dtype='int32')
 # k>0,左下角对角线,对角线下移
 >>> ar8
 array([[0, 0, 0, 0, 0],
        [1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0],
        [0, 0, 1, 0, 0],
        [0, 0, 0, 1, 0]])
 >>> ar9=np.eye(5,k=-2,dtype='int32')
 >>> ar9
 array([[0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0],
        [1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0],
        [0, 0, 1, 0, 0]])


2 END

本文首发微信公众号:梯阅线条

更多内容参考python知识分享或软件测试开发目录。

相关推荐

大文件传不动?WinRAR/7-Zip 入门到高手,这 5 个技巧让你效率翻倍

“这200张照片怎么传给女儿?微信发不了,邮箱附件又超限……”62岁的张阿姨对着电脑犯愁时,儿子只用了3分钟就把照片压缩成一个文件,还教她:“以后用压缩软件,比打包行李还方便!”职场人更懂这...

电脑解压缩软件推荐——7-Zip:免费、高效、简洁的文件管理神器

在日常工作中,我们经常需要处理压缩文件。无论是下载软件包、接收文件,还是存储大量数据,压缩和解压缩文件都成为了我们日常操作的一部分。而说到压缩解压软件,7-Zip绝对是一个不可忽视的名字。今天,我就来...

设置了加密密码zip文件要如何打开?这几个方法可以试试~

Zip是一种常见的压缩格式文件,文件还可以设置密码保护。那设置了密码的Zip文件要如何打开呢?不清楚的小伙伴一起来看看吧。当我们知道密码想要打开带密码的Zip文件,我们需要用到适用于Zip格式的解压缩...

大文件想要传输成功,怎么把ZIP文件分卷压缩

不知道各位小伙伴有没有这样的烦恼,发送很大很大的压缩包会受到限制,为此,想要在压缩过程中将文件拆分为几个压缩包并且同时为所有压缩包设置加密应该如何设置?方法一:使用7-Zip免费且强大的文件管理工具7...

高效处理 RAR 分卷压缩包:合并解压操作全攻略

在文件传输和存储过程中,当遇到大文件时,我们常常会使用分卷压缩的方式将其拆分成多个较小的压缩包,方便存储和传输。RAR作为一种常见的压缩格式,分卷压缩包的使用频率也很高。但很多人在拿到RAR分卷...

2个方法教你如何删除ZIP压缩包密码

zip压缩包设置了加密密码,每次解压文件都需要输入密码才能够顺利解压出文件,当压缩包文件不再需要加密的时候,大家肯定想删除压缩包密码,或是忘记了压缩包密码,想要通过删除操作将压缩包密码删除,就能够顺利...

速转!漏洞预警丨压缩软件Winrar目录穿越漏洞

WinRAR是一款功能强大的压缩包管理器,它是档案工具RAR在Windows环境下的图形界面。该软件可用于备份数据,缩减电子邮件附件的大小,解压缩从Internet上下载的RAR、ZIP及其它类...

文件解压方法和工具分享_文件解压工具下载

压缩文件减少文件大小,降低文件失效的概率,总得来说好处很多。所以很多文件我们下载下来都是压缩软件,很多小伙伴不知道怎么解压,或者不知道什么工具更好,所以今天做了文件解压方法和工具的分享给大家。一、解压...

[python]《Python编程快速上手:让繁琐工作自动化》学习笔记3

1.组织文件笔记(第9章)(代码下载)1.1文件与文件路径通过importshutil调用shutil模块操作目录,shutil模块能够在Python程序中实现文件复制、移动、改名和删除;同时...

Python内置tarfile模块:读写 tar 归档文件详解

一、学习目标1.1学习目标掌握Python内置模块tarfile的核心功能,包括:理解tar归档文件的原理与常见压缩格式(gzip/bz2/lzma)掌握tar文件的读写操作(创建、解压、查看、过滤...

使用python展开tar包_python拓展

类Unix的系统,打包文件经常使用的就是tar包,结合zip工具,可以方便的打包并解压。在python的标准库里面有tarfile库,可以方便实现生成了展开tar包。使用这个库最大的好处,可能就在于不...

银狐钓鱼再升级:白文件脚本化实现GO语言后门持久驻留

近期,火绒威胁情报中心监测到一批相对更为活跃的“银狐”系列变种木马。火绒安全工程师第一时间获取样本并进行分析。分析发现,该样本通过阿里云存储桶下发恶意文件,采用AppDomainManager进行白利...

ZIP文件怎么打开?2个简单方法教你轻松搞定!

在日常工作和生活中,我们经常会遇到各种压缩文件,其中最常见的格式之一就是ZIP。ZIP文件通过压缩数据来减少文件大小,方便我们进行存储和传输。然而,对于初学者来说,如何打开ZIP文件可能会成为一个小小...

Ubuntu—解压多个zip压缩文件.zip .z01 .z02

方法将所有zip文件放在同一目录中:zip_file.z01,zip_file.z02,zip_file.z03,...,zip_file.zip。在Zip3.0版本及以上,使用下列命令:将所有zi...

如何使用7-Zip对文件进行加密压缩

7-Zip是一款开源的文件归档工具,支持多种压缩格式,并提供了对压缩文件进行加密的功能。使用7-Zip可以轻松创建和解压.7z、.zip等格式的压缩文件,并且可以通过设置密码来保护压缩包中的...

取消回复欢迎 发表评论: