从泊松方程的解法,聊到泊松图像融合
off999 2024-10-26 11:58 48 浏览 0 评论
雷锋网 AI 科技评论按,本文作者成指导,字节跳动算法工程师,本文首发于知乎,雷锋网 AI 科技评论获其授权转载,正文内容如下:
2004 年 SIGGRAPH 上,Microsoft Research UK 有篇经典的图像融合文章《Poisson Image Editing》。先看看其惊人的融合结果(非论文配图,本人实验结果):
这篇文章的实现,无关目前算法领域大火的神经网络,而是基于泊松方程推导得出。
泊松方程是什么?
很多朋友比较熟悉概率论里面的泊松分布。泊松方程,也是同一个数学家泊松发明的。但却和泊松分布没有什么关系,是泊松物理学领域提出的一个偏微分方程。
这里
表示的是拉普拉斯算子,
和
(
在泊松方程中是已知量)可以是实数或复数值方程,特殊情况当
时被称为拉普拉斯方程。当处于欧几里得空间时,拉普拉斯算子通常表示为
。
学习图像处理的朋友对于
和
比较熟悉,分别表示二阶微分(直角坐标系下的散度)、一阶微分(直角坐标系下的梯度)。
微分与卷积
连续空间中的微分计算,就是大学里微积分那一套公式。但是在计算机的世界里,数据都是在离散空间中进行表示,对于图像而言,基本的计算单元就是像素点。让我们从最简单的情形,一维数组的微分说起:
表示位置 x 一阶微分计算(一阶中心导):
表示位置 x 二阶微分计算(二阶中心导):
随着
,上面的微分算式的结果会逐渐逼近真实的微分值。对于图像而言,这里 h 最小可分割单元是像素,也就表示像素间的间距,可视为 1。再看看,二阶微分的公式,是不是可以看成
的卷积核
在一维数组上进行卷积计算的结果(卷积中心在 x 上)。
至此,不难理解,离散数据(例如图像)上的微分操作完全可以转换为卷积操作。
当数组维度更高,变成二维数组呢?也就是处理图像的拉普拉斯算子:
此时,卷积核尺寸应该是
,具体数值为
,称为拉普拉斯卷积核。
记住拉普拉斯卷积核,我们后面会用到。
泊松方程求解
这个时候,想想我们学会了什么?泊松方程的形式,以及拉普拉斯卷积核。
再想想,在图像场景下,什么是泊松方程的核心问题?
已知图像点二阶微分值(直角坐标系下即散度 div)的情况下,求解各个图像点的像素值。
一个简单的例子,假设有一张
的图像
,
表示各个位置上的图像像素值,共 16 个未知参数需要被求解。
应用拉普拉斯卷积核后,得到 4 个方程式:
4 个方程式求解出 16 个未知参数?这是不可能的。
因此,我们需要另加入至少 12 个更多的方程式,也就是说,需要把剩余 12 个边界点的值确定,即需要确定边界条件。边界一般符合 2 种常见的边界条件:
Neumann 边界,译为纽曼边界或黎曼边界,给出函数在边界处的二阶导数值;
Dirichlet 边界,狄利克雷边界,给出边界处函数在边界处的实际值。
但给定边界条件之后,就可以有 16 个方程式组成的方程组了,矩阵化表示此方程组之后,得到形式为
。
看到
,大家就应该放松了,不就是解方程嘛,用雅可比迭代法或者高斯赛德尔迭代法来求解就 OK 了。
Poisson Image Editing
背景知识储备好了后,让我们把目光拉回到论文《Poisson Image Editing》上。
在图像融合任务中,前景放置在背景上时,需要保证两点:
前景本身主要内容相比于背景而言,尽量平滑;
边界处无缝,即前景、背景在边界点位置上的像素值,需要保持边界一致。
重点关注两个词:内容平滑、边界一致。平滑是什么?可以理解成图像前景、背景梯度相同。边界一致是指什么?可以理解成在边界上像素值相同。再用一张图来说明:
上图中 u 表示需要被合成的前景图片,V 是 u 的梯度场。S 是背景图片,
是合并后目标图像中被前景所覆盖的区域,则
是
的边界。设合并后图像在
内的像素表示函数是 f,在
外的像素值表示函数是
。
此时,平滑可表示为:
;保持边界一致可表示为:
。
这里如果接触过泛函的朋友会比较开心,没接触过的朋友可以先看看欧拉-拉格朗日方程。
令
,
代入欧拉-拉格朗日方程后则有:
注意:F 是
f 的函数,不是对 f 的,因此
怎么样,看起来是不是一个泊松方程呢?当然,还差两步:
因为需要平滑,div v 取值需要同时参考前景图片和背景图片,可以直接等于前景像素的散度,也可以在前景和背景在同一点像素的散度进行某种组合得到(论文中在 Selection cloning 和 Selection editing 章节有讨论各自合适的场景,但个人以为这里采取学习的方法应该更鲁棒,而不是用固定的策略来区分)。anyway,div v 是可以计算的已知量;
因为需要保持边界一致,边界条件上像素值等于背景图片即可。当然也可以做一些策略,但同样也可以计算得到的已知量。
现在很轻松了,边界条件已知、散度已知,在离散空间中求解泊松方程中的 f,参考上一节的求解过程即可。
代码实现
函数代码已经收录在了 OpenCV 的官方函数 seamlessClone 里:github source code
使用的时候,需要三张图片:前景图、背景图、mask 图(指明前景图中需要融合的区域,最简单的就是直接等于前景图大小的 mask,待融合区域是白色,其余位置黑色)。
下面我们使用 OpenCV 的 Python 接口来动手试试,用到以下两张图以及一段代码:
foreground.jpg
background.jpg
import cv2
import numpy as np
# Read images : src image will be cloned into dst
dst = cv2.imread("background.jpg")
obj= cv2.imread("foreground.jpg")
# Create an all white mask
mask = 255 * np.ones(obj.shape, obj.dtype)
# The location of the center of the src in the dst
width, height, channels = im.shape
center = (height/2, width/2)
# Seamlessly clone src into dst and put the results in output
normal_clone = cv2.seamlessClone(obj, dst, mask, center, cv2.NORMAL_CLONE)
mixed_clone = cv2.seamlessClone(obj, dst, mask, center, cv2.MIXED_CLONE)
# Write results
cv2.imwrite("images/opencv-normal-clone-example.jpg", normal_clone)
cv2.imwrite("images/opencv-mixed-clone-example.jpg", mixed_clone)
最终效果如下:
相关推荐
- 面试官:来,讲一下枚举类型在开发时中实际应用场景!
-
一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...
- 一日一技:11个基本Python技巧和窍门
-
1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...
- Python Enum 技巧,让代码更简洁、更安全、更易维护
-
如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...
- Python元组编程指导教程(python元组的概念)
-
1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...
- 你可能不知道的实用 Python 功能(python有哪些用)
-
1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...
- Python 2至3.13新特性总结(python 3.10新特性)
-
以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...
- Python中for循环访问索引值的方法
-
技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...
- Python enumerate核心应用解析:索引遍历的高效实践方案
-
喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...
- Python入门到脱坑经典案例—列表去重
-
列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...
- Python枚举类工程实践:常量管理的标准化解决方案
-
本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...
- 让Python枚举更强大!教你玩转Enum扩展
-
为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...
- Python枚举(Enum)技巧,你值得了解
-
枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...
- 登录人人都是产品经理即可获得以下权益
-
文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...
- Python常用小知识-第二弹(python常用方法总结)
-
一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)