论文画图神器!9种统计学图形的matplotlib画法
off999 2024-10-27 11:47 20 浏览 0 评论
大家好,我是小雨。
上一讲,我们给大家介绍了matplotlib的快速上手教程,介绍了常用的线性图形与散点图的画法。
今天我们继续升级!给大家讲解一些常用的统计学图形画法,学会正确使用matplotlib进行绘制。我们将从函数功能、实例代码、参数讲解、效果演示四个层面来讲解每一种统计图。希望大家能对python数据可视化有一个直观的认识!
一、bar()函数
1.函数功能
绘制柱状图
2. 实例代码
import matplotlib as mpl
import matplotlib.pyplot as plt
x = [1,2,3,4,5,6,7,8]
y = [3,4,5,2,9,5,1,4]
mpl.rcParams['font.sans-serif']=['SimHei'] # 设置字体为黑体,为了显示中文
plt.bar(x,y,align='center',color='c',tick_label=['a','-2','c','d','e','f','g','h'],hatch='/')
plt.xlabel('编号')
plt.ylabel('满意度')
plt.show()
参数说明: 绘制柱状图plt.bar(x,y,tick_label,hatch)
- x:类别
- y:数值
- tick_label:类别标识名
- color:柱状图的颜色
- hatch:表示刻度阴影类型主要有这些类型:/、*、.、|、-、+、x、o、O
matplotlib坐标轴若显示中文,需要修改默认属性,rcParams将字体改为中文字体。这里的sans-serif表示非衬线字体将其值设为SimHei(中文黑体)。
3. 效果演示
二、barh()函数
1.函数功能
绘制条形图
2. 实例代码
import matplotlib as mpl
import matplotlib.pyplot as plt
x = [1,2,3,4,5,6,7,8]
y = [2,3,4,9,1,2,6,4]
mpl.rcParams['font.sans-serif'] = ['SimHei']
plt.barh(x,y,tick_label=['a','b','c','d','e','f','g','h'],color='m')
plt.xlabel('评分')
plt.ylabel('编号')
plt.show()
参数说明: 绘制条形图plt.barh(x,y)
- x:在y轴上显示的类别
- y:各个类别的数量值
3. 效果演示
三、hist()函数
1.函数功能
绘制直方图
2. 实例代码
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams['font.sans-serif'] = ['SimHei']
x = np.random.randint(0,100,100) # 生成范围在【0~100】之间100个数据
bins = np.arange(0,101,10) # 生成数组[0 10 20 ... 100],里面是间隔为10的十个数
plt.hist(x,bins,color='g',alpha=0.5)
plt.xlabel('分数段')
plt.ylabel('人数')
plt.title("各分数段人数分布")
plt.show()
参数说明: 绘制直方图plt.hist(x,bins,color,alpha)
- x:数据集,直方图会对该数据集的大小按区间进行归类
- bins:数据集的分隔区间
- color:直方图的颜色
- alpha:直方图颜色的透明度
直方图与柱形图相似但不同,直方图表示的是离散型数值的区间分布情况;更多关于直方图hist的教程请参考官方文档。
range与arange的区别: arange函数返回的是numpy里定义的数组,数组每一个元素的数据类型一致。range在Python2与Python3里有着不同的功能。Python2里的range返回的是列表,而Python3里的range返回的是可迭代的对象,通常使用for循环将其输出。
3. 效果演示
四、pie()函数
1.函数功能
绘制饼图,显示不同类别所占百分比。
2. 实例代码
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams['font.sans-serif'] = ['SimHei']
labels = ['房贷','育儿','饮食','交通','娱乐','其它']
sizes = [5,1,2,0.5,0.8,1.5]
explode = (0.1,0,0,0,0,0)
plt.pie(x=sizes,explode=explode,labels=labels,autopct='%1.1f%%',startangle=150)
plt.title("饼图-6月家庭支出情况")
plt.show()
参数说明: 绘制饼图plt.pie(x,explode,labels,autopct,startangle)
- x:每一块的比例,如果sum(x)>1,会对sum(x)进行归一化操作。
- explode:每一块离开中心的距离
- labels:每一块外侧显示的标签文字
- autopct:控制饼图百分比设置,可以使用format字符串表示,%1.1f%%小数点前后各一位(没有用空格补齐)
- startangle:起始绘制角度,默认从x轴正方向逆时针画起,若设定90度则从y轴正方向画起。
3. 效果演示
五、scatter()函数
1.函数功能
用于绘制气泡图,二维数据借助气泡大小展示三维数据。
2. 实例代码
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
mpl.rcParams['axes.unicode_minus'] = False # 为了坐标轴负号正常显示
a = np.random.randn(100)
b = np.random.randn(100)
plt.style.use('ggplot') # 设置绘图风格
plt.scatter(a,b,c=np.random.rand(100),cmap='jet',s=100*(a**2+b**2),alpha=0.7)
plt.colorbar() # 用于显示颜色柱
plt.title('气泡图')
plt.show()
参数说明: 绘制气泡图:plt.scatter(a,b,c,s,cmap)
- a:x轴上的离散数值,固定长度的数组。
- b:y轴上的离散数值,固定长度的数组。
- c:气泡的颜色,可以是固定颜色也可以是一个数组。
- s:气泡的大小,用于记录第三维度的函数关系。
- cmap:颜色映射表,可以简单理解成配色方案。
matplotlib默认不支持中文,设置中文字体后,负号会显示异常。需要手动将坐标轴负号设为False才能正常显示负号。
3. 效果演示
六、polar()函数
1.函数功能
绘制雷达图(极线图)
2. 实例代码
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams['font.sans-serif'] = ['SimHei']
plt.style.use('ggplot') # 设置绘图风格
theta = np.array([0.25,0.75,1,1.5,0.25]) # 定义各个点的极角
r = [20,60,40,60,20] # 定义各个点极径的长度
plt.polar(theta*np.pi,r,'r-',lw=1) # 设置雷达图路径,r-表示红色实线
plt.fill(theta*np.pi,r,c='c',alpha=0.4) # 填充雷达图,课设置颜色与透明度
plt.ylim(0,100) # 设置极坐标轴的范围
plt.title('雷达图')
plt.show()
参数说明: 绘制雷达图plt.polar(theta,r,marker)
- theta:在极坐标系下坐标点的角度
- r:在极坐标系下坐标点与极点的距离
- marker:定义各个点的样式
3. 效果演示
七、stem()函数
1.函数功能
用于绘制棉棒图
2.实例代码
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
x = np.linspace(0.5,2*np.pi,20)
y = np.random.randn(20)
plt.stem(x,y,linefmt='-.',markerfmt='o',basefmt='-')
plt.title('棉棒图')
plt.show()
参数说明 绘制棉棒图plt.stem(x,y,linefmt,markerfmt,basefmt)
- x:指定x轴的位置
- y:设置棉棒的长度
- linefmt:棉棒的样式
- markerfmt:棉棒末端的样式
- basefmt:棉棒基线的样式
3.效果演示
八、boxplot()函数
1.函数功能
用于绘制箱线图
2.实例代码
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
x1 = np.random.randn(100)
x2 = np.random.randn(100)
x3 = np.random.randn(100)
labels = ['第一','第二','第三']
plt.boxplot([x1,x2,x3],labels=labels)
plt.grid(axis='y',ls=':',lw=1,c='g',alpha=0.4)
plt.title('箱线图')
plt.show()
参数说明: 绘制箱线图plt.boxplot(x,labels)
- x:输入的数据
- label:图例
3.效果演示
九、errorbar()函数
1.函数功能
用于绘制误差棒图
2.实例代码
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
x = np.linspace(0.1,0.6,6)
y = np.exp(x)
plt.errorbar(x,y,fmt='o:',yerr=0.2,xerr=0.02,ecolor='g',mfc='c',mec='r',capthick=2,capsize=3)
plt.xlim(0,0.7)
plt.title('误差棒图')
plt.show()
参数说明 绘制误差棒图plt.errorbar(x,y,fmt,yerr,xerr,ecolor,mfc,mec,capthick,capsize)
- x:数据点的水平位置
- y:数据点的垂直位置
- fmt:数据点的标记样式和数据点标记的连接线样式
- xerr:x轴方向数据点的误差计算方法
- yerr:y轴方向数据误差点的计算方法
- ecolor:误差棒的颜色
- mfc:数据点的标记颜色
- mec:数据点标记边缘颜色
- capthick:误差棒边界横杠的厚度
- capsize:误差棒边界横杠的大小
3.效果演示
十、最后
本节我们简单介绍了一下matplotlib是如何绘制统计学中常见的图形的,大家可以收藏下来,需要的时候可翻出查阅。
小伙伴们可以动手输入以上代码,看看输出的结果是否达到预期,能否感受到matplotlib绘图的细致与精美。
下一节,我们将继续介绍这些统计学图形在具体实践环节的使用。
最后,感谢大家的阅读。
相关推荐
- Python四种常用的高阶函数,你会用了吗
-
每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试1、什么是高阶函数把函数作为参数传入,这样的函数称为高阶函数例如:...
- Python之函数进阶-函数加强(上)(python函数的作用增强代码的可读性)
-
一.递归函数递归是一种编程技术,其中函数调用自身以解决问题。递归函数需要有一个或多个终止条件,以防止无限递归。递归可以用于解决许多问题,例如排序、搜索、解析语法等。递归的优点是代码简洁、易于理解,并...
- 数据分析-一元线性回归分析Python
-
前面几篇介绍了数据的相关性分析,通过相关性分析可以看出变量之间的相关性程度。如果我们已经发现变量之间存在明显的相关性了,接下来就可以通过回归分析,计算出具体的相关值,然后可以用于对其他数据的预测。本篇...
- python基础函数(python函数总结)
-
Python函数是代码复用的核心工具,掌握基础函数的使用是编程的关键。以下是Python函数的系统总结,包含内置函数和自定义函数的详细用法,以及实际应用场景。一、Python内置函数(...
- python进阶100集(9)int数据类型深入分析
-
一、基本概念int数据类型基本上来说这里指的都是整形,下一届我们会讲解整形和浮点型的转化,以及精度问题!a=100b=a这里a是变量名,100就是int数据对象,b指向的是a指向的对象,...
- Python学不会来打我(73)python常用的高阶函数汇总
-
python最常用的高阶函数有counter(),sorted(),map(),reduce(),filter()。很多高阶函数都是将一个基础函数作为第一个参数,将另外一个容器集合作为第二个参数,然...
- python中有哪些内置函数可用于编写数值表达式?
-
在Python中,用于编写数值表达式的内置函数很多,它们可以帮助你处理数学运算、类型转换、数值判断等。以下是常用的内置函数(不需要导入模块)按类别归类说明:一、基础数值处理函数函数作用示例ab...
- 如何在Python中获取数字的绝对值?
-
Python有两种获取数字绝对值的方法:内置abs()函数返回绝对值。math.fabs()函数还返回浮点绝对值。abs()函数获取绝对值内置abs()函数返回绝对值,要使用该函数,只需直接调用:a...
- 【Python大语言模型系列】使用dify云版本开发一个智能客服机器人
-
这是我的第359篇原创文章。一、引言上篇文章我们介绍了如何使用dify云版本开发一个简单的工作流:【Python大语言模型系列】一文教你使用dify云版本开发一个AI工作流(完整教程)这篇文章我们将引...
- Python3.11版本使用thriftpy2的问题
-
Python3.11于2022年10月24日发布,但目前thriftpy2在Python3.11版本下无法安装,如果有使用thriftpy2的童鞋,建议晚点再升级到最新版本。...
- uwsgi的python2+3多版本共存(python多版本兼容)
-
一、第一种方式(virtualenv)1、首先,机器需要有python2和python3的可执行环境。确保pip和pip3命令可用。原理就是在哪个环境下安装uwsgi。uwsgi启动的时候,就用的哪个...
- 解释一下Python脚本中版本号声明的作用
-
在Python脚本中声明版本号(如__version__变量)是一种常见的元数据管理实践,在IronPython的兼容性验证机制中具有重要作用。以下是版本号声明的核心作用及实现原理:一、版本号...
- 除了版本号声明,还有哪些元数据可以用于Python脚本的兼容性管理
-
在Python脚本的兼容性管理中,除了版本号声明外,还有多种元数据可以用于增强脚本与宿主环境的交互和验证。以下是一些关键的元数据类型及其应用场景:一、环境依赖声明1.Python版本要求pyth...
- 今年回家没票了?不,我有高科技抢票
-
零基础使用抢票开源软件Py12306一年一度的抢票季就要到了,今天给大家科普一下一款软件的使用方法。软件目前是开源的,禁止用于商用。首先需要在电脑上安装python3.7,首先从官网下载对应的安装包,...
- 生猛!春运抢票神器成GitHub热榜第一,过年回家全靠它了
-
作者:车栗子发自:凹非寺量子位报道春节抢票正在如火如荼的进行,过年回家那肯定需要抢票,每年的抢票大战,都是一场硬战,没有一个好工具,怎么能上战场死锁呢。今天小编推荐一个Python抢票工具,送到...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)