百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python版排序算法总结(python中排序的用法)

off999 2024-10-27 11:50 22 浏览 0 评论

1.快速排序


a.原理


快速排序的基本思想是在待排序的 n 个元素中任取一个元素(通常取第一个元素)作为基准,把该元素放人最终位置后,整个数据序列被基准分割成两个子序列,所有小于基准的元素放置在前子序列中,所有大于基准的元素放置在后子序列中,并把基准排在这两个子序列的中间,这个过程称为划分。然后对两个子序列分别重复上述过程,直到每个子序列内只有一个元素或空为止。

这是一种二分法思想,每次将整个无序序列一分为二。归位一个元素,对两个子序列采用同样的方式进行排序,直到子序列的长度为1或0为止。(摘自算法分析与设计第二版 有删改)


b.代码


def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]#轴
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quick_sort(left) + middle + quick_sort(right)
s = list(map(float,input("输入用空格分隔的数字:").split()))#
print(quick_sort(s))





c.复杂度


时间复杂度最好情况O(nlog2n),


时间复杂度最坏情况O(n^2),


时间复杂度平均情况O(nlog2n),


空间复杂度最好情况O(log2n),


d.稳定性


不稳定


2.插入排序


a.原理


插入排序,一般也被称为直接插入排序。对于少量元素的排序,它是一个有效的算法。插入排序是一种最简单的排序方法,它的基本思想是将一个记录插入到已经排好序的有序表中,从而一个新的、记录数增1的有序表。在其实现过程使用双层循环,外层循环对除了第一个元素之外的所有元素,内层循环对当前元素前面有序表进行待插入位置查找,并进行移动。


b.代码


def insert_sort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i - 1
        while j >= 0 and arr[j] > key:
            arr[j + 1] = arr[j]
            j -= 1
        arr[j + 1] = key
    return arr

arr = [3, 5, 2, 4, 1]
print(insert_sort(arr))





c.复杂度


时间复杂度最好情况O(n),


时间复杂度最坏情况O(n^2),


时间复杂度平均情况O(n^2),


空间复杂度最好情况O(1),


d.稳定性


稳定


3.冒泡排序


a.原理


重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序错误就把他们交换过来。走访元素的工作是重复地进行,直到没有相邻元素需要交换,也就是说该元素列已经排序完成


b.代码


def bubble_sort(arr):
    for i in range(len(arr)):
        for j in range(len(arr) - i - 1):
            if arr[j] > arr[j + 1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
    return arr

arr = [3, 5, 2, 4, 1]
print(bubble_sort(arr))





c.复杂度


时间复杂度最好情况O(n),


时间复杂度最坏情况O(n^2),


时间复杂度平均情况O(n^2),


空间复杂度最好情况O(1),


d.稳定性


稳定


4.希尔排序


a.原理


希尔排序是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。

希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1 时,整个文件恰被分成一组,算法便终止。


b.代码


def shell_sort(arr):
    n = len(arr)
    gap = n // 2
    while gap > 0:
        for i in range(gap, n):
            temp = arr[i]
            j = i
            while j >= gap and arr[j - gap] > temp:
                arr[j] = arr[j - gap]
                j -= gap
            arr[j] = temp
        gap //= 2
    return arr

arr = [3, 5, 2, 4, 1]
print(shell_sort(arr))





c.复杂度


时间复杂度最好情况,


时间复杂度最坏情况,


时间复杂度平均情况O(n^1.3),


空间复杂度最好情况O(1),


d.稳定性


稳定


5.选择排序


a.原理


选择排序是一种简单直观的排序算法。它的工作原理是:第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,然后放到已排序的序列的末尾。以此类推,直到全部待排序的数据元素的个数为零。选择排序是不稳定的排序方法


b.代码


def selection_sort(arr):
    for i in range(len(arr)):
        min_index = i
        for j in range(i + 1, len(arr)):
            if arr[min_index] > arr[j]:
                min_index = j
        arr[i], arr[min_index] = arr[min_index], arr[i]
    return arr

arr = [3, 5, 2, 4, 1]
print(selection_sort(arr))




c.复杂度


时间复杂度最好情况O(n^2),


时间复杂度最坏情况O(n^2),


时间复杂度平均情况O(n^2),


空间复杂度最好情况O(1),


d.稳定性


稳定


6.堆排序


a.原理


堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

发明人:罗伯特·弗洛伊德


b.代码


def heap_sort(arr):
    n = len(arr)
    # 建立大顶堆
    for i in range(n // 2 - 1, -1, -1):
        heapify(arr, n, i)
    # 将堆顶元素与末尾元素交换,并重新调整大顶堆
    for i in range(n - 1, 0, -1):
        arr[i], arr[0] = arr[0], arr[i]
        heapify(arr, i, 0)
    return arr

def heapify(arr, n, i):
    largest = i
    l = 2 * i + 1
    r = 2 * i + 2
    if l < n and arr[largest] < arr[l]:
        largest = l
    if r < n and arr[largest] < arr[r]:
        largest = r
    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]
        heapify(arr, n, largest)

arr = [3, 5, 2, 4, 1]
print(heap_sort(arr))





c.复杂度


时间复杂度最好情况O(nlog2n),


时间复杂度最坏情况O(nlog2n),


时间复杂度平均情况O(nlog2n),


空间复杂度最好情况O(1),


d.稳定性


不稳定


7.归并排序


a.原理


归并排序的基本思想是首先将 a [0.. n 一1]看成 n 个长度为1的有序表,将相邻的 k ( k ≥2)个有序子表成对归并,得到 n / k 个长度为 k 的有序子表:然后再将这些有序子表继续归并,得到 n /k2个长度为 k 的有序子表,如此反复进行下去,最后得到一个长度为 n 的有序表。由于整个排序结果放在一个数组中,所以不需要特别地进行合并操作。若 k =2,即归并是在相邻的两个有序子表中进行的,称为二路归并排序。若 k >2,即归并操作在相邻的多个有序子表中进行,则叫多路归并排序。(摘自算法分析与设计第二版)


b.代码


def merge_sort(arr):
    if len(arr) > 1:
        mid = len(arr) // 2
        left = arr[:mid]
        right = arr[mid:]
        merge_sort(left)
        merge_sort(right)

        i = j = k = 0

        while i < len(left) and j < len(right):
            if left[i] < right[j]:
                arr[k] = left[i]
                i += 1
            else:
                arr[k] = right[j]
                j += 1
            k += 1

        while i < len(left):
            arr[k] = left[i]
            i += 1
            k += 1

        while j < len(right):
            arr[k] = right[j]
            j+= 1
            k += 1

arr = [12, 11, 13, 5, 6, 7]
merge_sort(arr)
print(arr)





c.复杂度


时间复杂度最好情况O(nlog2n),


时间复杂度最坏情况O(nlog2n),


时间复杂度平均情况O(nlog2n),


空间复杂度最好情况O(n),


d.稳定性


稳定

相关推荐

Python四种常用的高阶函数,你会用了吗

每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试1、什么是高阶函数把函数作为参数传入,这样的函数称为高阶函数例如:...

Python之函数进阶-函数加强(上)(python函数的作用增强代码的可读性)

一.递归函数递归是一种编程技术,其中函数调用自身以解决问题。递归函数需要有一个或多个终止条件,以防止无限递归。递归可以用于解决许多问题,例如排序、搜索、解析语法等。递归的优点是代码简洁、易于理解,并...

数据分析-一元线性回归分析Python

前面几篇介绍了数据的相关性分析,通过相关性分析可以看出变量之间的相关性程度。如果我们已经发现变量之间存在明显的相关性了,接下来就可以通过回归分析,计算出具体的相关值,然后可以用于对其他数据的预测。本篇...

python基础函数(python函数总结)

Python函数是代码复用的核心工具,掌握基础函数的使用是编程的关键。以下是Python函数的系统总结,包含内置函数和自定义函数的详细用法,以及实际应用场景。一、Python内置函数(...

python进阶100集(9)int数据类型深入分析

一、基本概念int数据类型基本上来说这里指的都是整形,下一届我们会讲解整形和浮点型的转化,以及精度问题!a=100b=a这里a是变量名,100就是int数据对象,b指向的是a指向的对象,...

Python学不会来打我(73)python常用的高阶函数汇总

python最常用的高阶函数有counter(),sorted(),map(),reduce(),filter()。很多高阶函数都是将一个基础函数作为第一个参数,将另外一个容器集合作为第二个参数,然...

python中有哪些内置函数可用于编写数值表达式?

在Python中,用于编写数值表达式的内置函数很多,它们可以帮助你处理数学运算、类型转换、数值判断等。以下是常用的内置函数(不需要导入模块)按类别归类说明:一、基础数值处理函数函数作用示例ab...

如何在Python中获取数字的绝对值?

Python有两种获取数字绝对值的方法:内置abs()函数返回绝对值。math.fabs()函数还返回浮点绝对值。abs()函数获取绝对值内置abs()函数返回绝对值,要使用该函数,只需直接调用:a...

【Python大语言模型系列】使用dify云版本开发一个智能客服机器人

这是我的第359篇原创文章。一、引言上篇文章我们介绍了如何使用dify云版本开发一个简单的工作流:【Python大语言模型系列】一文教你使用dify云版本开发一个AI工作流(完整教程)这篇文章我们将引...

Python3.11版本使用thriftpy2的问题

Python3.11于2022年10月24日发布,但目前thriftpy2在Python3.11版本下无法安装,如果有使用thriftpy2的童鞋,建议晚点再升级到最新版本。...

uwsgi的python2+3多版本共存(python多版本兼容)

一、第一种方式(virtualenv)1、首先,机器需要有python2和python3的可执行环境。确保pip和pip3命令可用。原理就是在哪个环境下安装uwsgi。uwsgi启动的时候,就用的哪个...

解释一下Python脚本中版本号声明的作用

在Python脚本中声明版本号(如__version__变量)是一种常见的元数据管理实践,在IronPython的兼容性验证机制中具有重要作用。以下是版本号声明的核心作用及实现原理:一、版本号...

除了版本号声明,还有哪些元数据可以用于Python脚本的兼容性管理

在Python脚本的兼容性管理中,除了版本号声明外,还有多种元数据可以用于增强脚本与宿主环境的交互和验证。以下是一些关键的元数据类型及其应用场景:一、环境依赖声明1.Python版本要求pyth...

今年回家没票了?不,我有高科技抢票

零基础使用抢票开源软件Py12306一年一度的抢票季就要到了,今天给大家科普一下一款软件的使用方法。软件目前是开源的,禁止用于商用。首先需要在电脑上安装python3.7,首先从官网下载对应的安装包,...

生猛!春运抢票神器成GitHub热榜第一,过年回家全靠它了

作者:车栗子发自:凹非寺量子位报道春节抢票正在如火如荼的进行,过年回家那肯定需要抢票,每年的抢票大战,都是一场硬战,没有一个好工具,怎么能上战场死锁呢。今天小编推荐一个Python抢票工具,送到...

取消回复欢迎 发表评论: