百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

如何用Python快速实现九种经典排序算法的可视化?

off999 2024-10-27 11:50 22 浏览 0 评论

今天为大家分享如何用Python快速实现九种经典排序算法的可视化,主要包括希尔排序(Shell Sort)、选择排序(Selection Sort)、快速排序(Quick Sort)、归并排序(Merge Sort)等九种排序的实现思路和示例代码,一起来看看吧:


最近在某网站上看到一个视频,是关于排序算法的可视化的,看着挺有意思的,也特别喜感。

不知道作者是怎么做的,但是突然很想自己实现一遍,而且用python实现特别快,花了一天的时间,完成了这个项目。

下面具体讲解以下实现的思路,大概需要解决的问题如下:

如何表示数组

如何得到随机采样数组,数组有无重复数据

如何实现排序算法

如何把数组可视化出来

一、如何表示数组

python提供了list类型,很方便可以表示C++中的数组。标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针。这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象。对于数值运算来说这种结构显然比较浪费内存和CPU计算时间,再次就不详细论述。

二、如何得到随机采样数组,数组有无重复数据

假设我希望数组长度是100,而且我希望数组的大小也是在[0,100)内,那么如何得到100个随机的整数呢?可以用random库。

示例代码:

import random
data = list(range(100))
data = random.choices(data, k=100)
print(data)
[52, 33, 45, 33, 48, 25, 68, 28, 78, 23, 78, 35, 24, 44, 69, 88, 66, 29, 82, 77, 84, 12, 19, 10, 
27, 24, 57, 42, 71, 75, 25, 1, 77, 94, 44, 81, 86, 62, 25, 69, 97, 86, 56, 47, 31, 51, 40, 21, 41, 
21, 17, 56, 88, 41, 92, 46, 56, 80, 23, 70, 49, 96, 83, 54, 16, 36, 82, 24, 68, 60, 16, 98, 16, 81,
 10, 13, 11, 24, 68, 35, 56, 39, 23, 44, 6, 30, 3, 60, 56, 66, 38, 28, 47, 47, 25, 90, 89, 38, 68, 
21]

但是以上代码有个问题,random.choices是对一个序列进行重复采样,得到的数组存在重复数据,那如果不希望存在重复数据,而是希望进行无重复采样,怎么办?

可以用random.sample函数,示例代码:

data = random.sample(data, k=100)
print(data)
[49, 28, 56, 28, 44, 62, 81, 25, 48, 33, 54, 38, 30, 16, 13, 19, 23, 56, 60, 66, 41, 24, 68, 68,
 77, 92, 78, 24, 66, 3, 80, 94, 78, 41, 84, 88, 21, 56, 25, 25, 75, 24, 38, 82, 31, 52, 23, 10, 
71, 40, 27, 46, 33, 35, 56, 51, 1, 23, 12, 25, 89, 16, 21, 21, 11, 42, 47, 44, 81, 35, 86, 88, 
29, 36, 77, 16, 39, 6, 57, 69, 96, 68, 24, 86, 97, 90, 69, 10, 68, 98, 56, 44, 83, 47, 70, 17, 
47, 82, 60, 45]

这样就可以得到无重复采样数据了。

三、如何实现排序算法

算法种类较多,就不一一举例;再次就以希尔排序(Shell Sort)为例讲讲:

尔排序的原理:希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。

希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

基础的插入法排序是两重循环,希尔排序是三重循环,最外面一重循环,控制增量gap,并逐步减少gap的值。二重循环从下标为gap的元素开始比较,依次逐个跨组处理。最后一重循环是对组内的元素进行插入法排序。这样进行排序的优点在于每次循环,整个序列的元素都将小元素的值逐步向前移动,数值比较大的值向后移动。

示例代码:

from data import DataSeq
def ShellSort(ds):
 assert isinstance(ds, DataSeq), "Type Error"
 Length = ds.length
 D = Length//2
 while D>0:
 i=0
 while i<Length:
 tmp = ds.data[i]
 j=i
 while j>=1 and ds.data[j-D]>tmp:
 ds.SetVal(j, ds.data[j-D])
 j-=D
 ds.SetVal(j, tmp)
 i+=D
 D//=2
if __name__ == "__main__":
 ds=DataSeq(64)
 ds.Visualize()
 ds.StartTimer()
 ShellSort(ds)
 ds.StopTimer()
 ds.SetTimeInterval(0)
 ds.Visualize()

四、如何把数组可视化出来

有了随机数组初始化方法,再实现好排序函数,我们还差一步,就是把排序函数中每次移动数组后将数组可视化并输出。

对数组进行可视化,很容易想到python的可视化工具matplotlib!但是在项目中我并没有用matplotlib,而是用了numpy+opencv。

为什么不用matplotlib?

因为在排序过程中,每次修改数组,都希望能够实时修改图片并输出,matplotlib确实很方便,但是matplotlib的效率实在是不高,而且每次修改数组前后的两幅图片其实是差不多的。如果用matplotlib,每次都是要重新绘制图片,非常耗时!!!

所以考虑自己生成图片,在每次修改数组后,只将图片中改动的那两列进行修改即可!这样就比用matplotlib每次重新绘制图片效率高得多!

数组中主要有两种操作,一种是对某个idx赋值,一种是交换某两个idx的值。

示例代码:

class DataSeq:
 WHITE = (255,255,255)
 RED = (0,0,255)
 BLACK = (0,0,0)
 YELLOW = (0,127,255)
 def __init__(self, Length, time_interval=1, sort_title="Figure", repeatition=False):
 pass
 def Getfigure(self):
 _bar_width = 5
 figure = np.full((self.length*_bar_width,self.length*_bar_width,3), 255,dtype=np.uint8)
 for i in range(self.length):
 val = self.data[i]
 figure[-1-val*_bar_width:, i*_bar_width:i*_bar_width+_bar_width] = self.GetColor(val, self.length)
 self._bar_width = _bar_width
 self.figure = figure
 def _set_figure(self, idx, val):
 min_col = idx*self._bar_width
 max_col = min_col+self._bar_width
 min_row = -1-val*self._bar_width
 self.figure[ : , min_col:max_col] = self.WHITE
 self.figure[ min_row: , min_col:max_col] = self.GetColor(val, self.length)
 def SetVal(self, idx, val):
 self.data[idx] = val
 self._set_figure(idx, val)
 self.Visualize((idx,))
 def Swap(self, idx1, idx2):
 self.data[idx1], self.data[idx2] = self.data[idx2], self.data[idx1]
 self._set_figure(idx1, self.data[idx1])
 self._set_figure(idx2, self.data[idx2])
 self.Visualize((idx1, idx2))

以上就是给大家分享的如何用Python快速实现九种经典排序算法的可视化的相关内容,想要了解更多python学习资料,可以关注“武汉千锋”微信公众号。

相关推荐

Python四种常用的高阶函数,你会用了吗

每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试1、什么是高阶函数把函数作为参数传入,这样的函数称为高阶函数例如:...

Python之函数进阶-函数加强(上)(python函数的作用增强代码的可读性)

一.递归函数递归是一种编程技术,其中函数调用自身以解决问题。递归函数需要有一个或多个终止条件,以防止无限递归。递归可以用于解决许多问题,例如排序、搜索、解析语法等。递归的优点是代码简洁、易于理解,并...

数据分析-一元线性回归分析Python

前面几篇介绍了数据的相关性分析,通过相关性分析可以看出变量之间的相关性程度。如果我们已经发现变量之间存在明显的相关性了,接下来就可以通过回归分析,计算出具体的相关值,然后可以用于对其他数据的预测。本篇...

python基础函数(python函数总结)

Python函数是代码复用的核心工具,掌握基础函数的使用是编程的关键。以下是Python函数的系统总结,包含内置函数和自定义函数的详细用法,以及实际应用场景。一、Python内置函数(...

python进阶100集(9)int数据类型深入分析

一、基本概念int数据类型基本上来说这里指的都是整形,下一届我们会讲解整形和浮点型的转化,以及精度问题!a=100b=a这里a是变量名,100就是int数据对象,b指向的是a指向的对象,...

Python学不会来打我(73)python常用的高阶函数汇总

python最常用的高阶函数有counter(),sorted(),map(),reduce(),filter()。很多高阶函数都是将一个基础函数作为第一个参数,将另外一个容器集合作为第二个参数,然...

python中有哪些内置函数可用于编写数值表达式?

在Python中,用于编写数值表达式的内置函数很多,它们可以帮助你处理数学运算、类型转换、数值判断等。以下是常用的内置函数(不需要导入模块)按类别归类说明:一、基础数值处理函数函数作用示例ab...

如何在Python中获取数字的绝对值?

Python有两种获取数字绝对值的方法:内置abs()函数返回绝对值。math.fabs()函数还返回浮点绝对值。abs()函数获取绝对值内置abs()函数返回绝对值,要使用该函数,只需直接调用:a...

【Python大语言模型系列】使用dify云版本开发一个智能客服机器人

这是我的第359篇原创文章。一、引言上篇文章我们介绍了如何使用dify云版本开发一个简单的工作流:【Python大语言模型系列】一文教你使用dify云版本开发一个AI工作流(完整教程)这篇文章我们将引...

Python3.11版本使用thriftpy2的问题

Python3.11于2022年10月24日发布,但目前thriftpy2在Python3.11版本下无法安装,如果有使用thriftpy2的童鞋,建议晚点再升级到最新版本。...

uwsgi的python2+3多版本共存(python多版本兼容)

一、第一种方式(virtualenv)1、首先,机器需要有python2和python3的可执行环境。确保pip和pip3命令可用。原理就是在哪个环境下安装uwsgi。uwsgi启动的时候,就用的哪个...

解释一下Python脚本中版本号声明的作用

在Python脚本中声明版本号(如__version__变量)是一种常见的元数据管理实践,在IronPython的兼容性验证机制中具有重要作用。以下是版本号声明的核心作用及实现原理:一、版本号...

除了版本号声明,还有哪些元数据可以用于Python脚本的兼容性管理

在Python脚本的兼容性管理中,除了版本号声明外,还有多种元数据可以用于增强脚本与宿主环境的交互和验证。以下是一些关键的元数据类型及其应用场景:一、环境依赖声明1.Python版本要求pyth...

今年回家没票了?不,我有高科技抢票

零基础使用抢票开源软件Py12306一年一度的抢票季就要到了,今天给大家科普一下一款软件的使用方法。软件目前是开源的,禁止用于商用。首先需要在电脑上安装python3.7,首先从官网下载对应的安装包,...

生猛!春运抢票神器成GitHub热榜第一,过年回家全靠它了

作者:车栗子发自:凹非寺量子位报道春节抢票正在如火如荼的进行,过年回家那肯定需要抢票,每年的抢票大战,都是一场硬战,没有一个好工具,怎么能上战场死锁呢。今天小编推荐一个Python抢票工具,送到...

取消回复欢迎 发表评论: