如何用Python快速实现九种经典排序算法的可视化?
off999 2024-10-27 11:50 14 浏览 0 评论
今天为大家分享如何用Python快速实现九种经典排序算法的可视化,主要包括希尔排序(Shell Sort)、选择排序(Selection Sort)、快速排序(Quick Sort)、归并排序(Merge Sort)等九种排序的实现思路和示例代码,一起来看看吧:
最近在某网站上看到一个视频,是关于排序算法的可视化的,看着挺有意思的,也特别喜感。
不知道作者是怎么做的,但是突然很想自己实现一遍,而且用python实现特别快,花了一天的时间,完成了这个项目。
下面具体讲解以下实现的思路,大概需要解决的问题如下:
如何表示数组
如何得到随机采样数组,数组有无重复数据
如何实现排序算法
如何把数组可视化出来
一、如何表示数组
python提供了list类型,很方便可以表示C++中的数组。标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针。这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象。对于数值运算来说这种结构显然比较浪费内存和CPU计算时间,再次就不详细论述。
二、如何得到随机采样数组,数组有无重复数据
假设我希望数组长度是100,而且我希望数组的大小也是在[0,100)内,那么如何得到100个随机的整数呢?可以用random库。
示例代码:
import random data = list(range(100)) data = random.choices(data, k=100) print(data) [52, 33, 45, 33, 48, 25, 68, 28, 78, 23, 78, 35, 24, 44, 69, 88, 66, 29, 82, 77, 84, 12, 19, 10, 27, 24, 57, 42, 71, 75, 25, 1, 77, 94, 44, 81, 86, 62, 25, 69, 97, 86, 56, 47, 31, 51, 40, 21, 41, 21, 17, 56, 88, 41, 92, 46, 56, 80, 23, 70, 49, 96, 83, 54, 16, 36, 82, 24, 68, 60, 16, 98, 16, 81, 10, 13, 11, 24, 68, 35, 56, 39, 23, 44, 6, 30, 3, 60, 56, 66, 38, 28, 47, 47, 25, 90, 89, 38, 68, 21]
但是以上代码有个问题,random.choices是对一个序列进行重复采样,得到的数组存在重复数据,那如果不希望存在重复数据,而是希望进行无重复采样,怎么办?
可以用random.sample函数,示例代码:
data = random.sample(data, k=100) print(data) [49, 28, 56, 28, 44, 62, 81, 25, 48, 33, 54, 38, 30, 16, 13, 19, 23, 56, 60, 66, 41, 24, 68, 68, 77, 92, 78, 24, 66, 3, 80, 94, 78, 41, 84, 88, 21, 56, 25, 25, 75, 24, 38, 82, 31, 52, 23, 10, 71, 40, 27, 46, 33, 35, 56, 51, 1, 23, 12, 25, 89, 16, 21, 21, 11, 42, 47, 44, 81, 35, 86, 88, 29, 36, 77, 16, 39, 6, 57, 69, 96, 68, 24, 86, 97, 90, 69, 10, 68, 98, 56, 44, 83, 47, 70, 17, 47, 82, 60, 45]
这样就可以得到无重复采样数据了。
三、如何实现排序算法
算法种类较多,就不一一举例;再次就以希尔排序(Shell Sort)为例讲讲:
尔排序的原理:希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
基础的插入法排序是两重循环,希尔排序是三重循环,最外面一重循环,控制增量gap,并逐步减少gap的值。二重循环从下标为gap的元素开始比较,依次逐个跨组处理。最后一重循环是对组内的元素进行插入法排序。这样进行排序的优点在于每次循环,整个序列的元素都将小元素的值逐步向前移动,数值比较大的值向后移动。
示例代码:
from data import DataSeq def ShellSort(ds): assert isinstance(ds, DataSeq), "Type Error" Length = ds.length D = Length//2 while D>0: i=0 while i<Length: tmp = ds.data[i] j=i while j>=1 and ds.data[j-D]>tmp: ds.SetVal(j, ds.data[j-D]) j-=D ds.SetVal(j, tmp) i+=D D//=2 if __name__ == "__main__": ds=DataSeq(64) ds.Visualize() ds.StartTimer() ShellSort(ds) ds.StopTimer() ds.SetTimeInterval(0) ds.Visualize()
四、如何把数组可视化出来
有了随机数组初始化方法,再实现好排序函数,我们还差一步,就是把排序函数中每次移动数组后将数组可视化并输出。
对数组进行可视化,很容易想到python的可视化工具matplotlib!但是在项目中我并没有用matplotlib,而是用了numpy+opencv。
为什么不用matplotlib?
因为在排序过程中,每次修改数组,都希望能够实时修改图片并输出,matplotlib确实很方便,但是matplotlib的效率实在是不高,而且每次修改数组前后的两幅图片其实是差不多的。如果用matplotlib,每次都是要重新绘制图片,非常耗时!!!
所以考虑自己生成图片,在每次修改数组后,只将图片中改动的那两列进行修改即可!这样就比用matplotlib每次重新绘制图片效率高得多!
数组中主要有两种操作,一种是对某个idx赋值,一种是交换某两个idx的值。
示例代码:
class DataSeq: WHITE = (255,255,255) RED = (0,0,255) BLACK = (0,0,0) YELLOW = (0,127,255) def __init__(self, Length, time_interval=1, sort_title="Figure", repeatition=False): pass def Getfigure(self): _bar_width = 5 figure = np.full((self.length*_bar_width,self.length*_bar_width,3), 255,dtype=np.uint8) for i in range(self.length): val = self.data[i] figure[-1-val*_bar_width:, i*_bar_width:i*_bar_width+_bar_width] = self.GetColor(val, self.length) self._bar_width = _bar_width self.figure = figure def _set_figure(self, idx, val): min_col = idx*self._bar_width max_col = min_col+self._bar_width min_row = -1-val*self._bar_width self.figure[ : , min_col:max_col] = self.WHITE self.figure[ min_row: , min_col:max_col] = self.GetColor(val, self.length) def SetVal(self, idx, val): self.data[idx] = val self._set_figure(idx, val) self.Visualize((idx,)) def Swap(self, idx1, idx2): self.data[idx1], self.data[idx2] = self.data[idx2], self.data[idx1] self._set_figure(idx1, self.data[idx1]) self._set_figure(idx2, self.data[idx2]) self.Visualize((idx1, idx2))
以上就是给大家分享的如何用Python快速实现九种经典排序算法的可视化的相关内容,想要了解更多python学习资料,可以关注“武汉千锋”微信公众号。
相关推荐
- 「Python条件结构」if…else实现判断奇偶数
-
功能要求用户从键盘上输入一个整数,判断该数是奇数还是偶数。说明:能被2整除的整数叫偶数,不能被2整除的叫奇数;即该数除以2后余数为0时该数为偶数,否则该数为奇数。求余数运算符为“%”。实例代码num...
- Python if else条件语句详解
-
前面我们看到的代码都是顺序执行的,也就是先执行第1条语句,然后是第2条、第3条……一直到最后一条语句,这称为顺序结构。但是对于很多情况,顺序结构的代码是远远不够的,比如一个程序限制了只能成年人使用,儿...
- python基础篇: python中的流程控制,你都了解吗?
-
在之前的文章中大致的介绍过python中的流程控制语句,今天通过一些案例来详细了解一下python中的流程语句。目前python中流程控制语句,包含如下,如有遗漏欢迎留言补充。在python中条件判断...
- python中if语句
-
if语句用来判断,当不同的条件成立去做与之对应事情;格式如下:if条件:执行代码条件为True才会去做执行代码布尔类型(bool)说到布尔类型,就像开关只有两个值一样,布尔类型的值只有两个...
- python中的循环语句到底难不难
-
好多初学者会有一种这样的心里:循环难不难?该怎么学习?下面来给大家分析下.Python中的循环语句并不难,但需要理解其核心逻辑和应用场景。以下是针对零基础学习者的清晰解析,通过对比、示例和常见误...
- Python6大基础运算符,看完这篇之后会让你有一个彻底认识
-
昨天我们准备好了Python程序所需要的的东西,那么今天我们开始了解Python的各种基础运算符,这些要是不熟悉下来你后面的路也会走的很艰难Python支持基础运算符,常见的算术运算符有+、-、*、/...
- Python基础:条件语句和循环语句
-
下面会详细讲解一下Python关于条件语句和循环语句,会包含一些示例代码。我们首先来介绍条件语句(if-else),然后再讨论循环语句(for和while循环)。条件语句(if-else)在Pytho...
- Python合集之Python循环语句(一)
-
在上一节的合集中,我们了解了Python流程控制语句中if语句的嵌套及条件表达会的相关知识,本节我们将进一步了解一下Python循环语句中的while语句的相关知识。在日常生活中很多问题都无...
- Python“三步”即可爬取,毋庸置疑
-
声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...
- 「Python条件结构」if…else实现三角形判断
-
功能要求编写程序,判断输入的三个数是否能构成三角形的三个边。如果可以,打印“可以构成三角形”;如果不可以,打印“不可以构成三角形”。构成三角形的条件是:三条边都等于0,且任何2条边的边长之和都大于第三...
- Python中检查对象是否具有某个属性的方法
-
技术背景在Python编程中,经常会遇到需要检查一个对象是否具有某个特定属性的情况。例如,在调用对象的属性之前,需要先确认该属性是否存在,以避免引发AttributeError异常。以下将介绍几种常见...
- Python条件语句:从入门到精通
-
导语条件语句是编程中的基础概念,它允许我们根据不同的条件执行不同的代码块。在Python中,条件语句的灵活性和易读性使其成为编写逻辑判断和流程控制的强大工具。本教程将带您深入了解Python条件语句的...
- 简单学Python——条件语句if
-
条件语句是用来判断给定的条件是否满足(表达式值是否为0或False),并根据判断的结果(真或假)决定执行的语句。Python条件语句用的是if或if和else、elif等搭配实现的。代码执行的过程:i...
- Python合集之Python跳转语句(一)
-
在上一节的合集中,我们了解了Python循环嵌套语句的相关知识,本节我们将进一步了解一下Python跳转语句中的break的相关知识。当循环条件一直满足时,程序会一直执行下去,如果希望在中间离开循环...
- 新手学Python避坑,学习效率狂飙! 八、Python 布尔值判断
-
布尔值判断系统知识在Python里,布尔类型仅有两个值:True和False,它们常被用于条件判断。下面从几个方面展开介绍:1.布尔运算逻辑与(and):只有当两个操作数都为True时,...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)