我用Python的Seaborn库,绘制了17个超好看图表
off999 2024-10-31 14:04 33 浏览 0 评论
推荐学习
Seaborn简介
定义
Seaborn是一个基于matplotlib且数据结构与pandas统一的统计图制作库。Seaborn框架旨在以数据可视化为中心来挖掘与理解数据。
优点
- 代码较少
- 图形美观
- 功能齐全
- 主流模块安装
pip命令安装
pip install matplotlib
pip install seaborn 从github安装
pip install git+https://github.com/mwaskom/seaborn.git 流程
导入绘图模块
mport matplotlib.pyplot as plt
import seaborn as sns 提供显示条件
%matplotlib inline #在Jupyter中正常显示图形 导入数据
#Seaborn内置数据集导入
dataset = sns.load_dataset('dataset')
#外置数据集导入(以csv格式为例)
dataset = pd.read_csv('dataset.csv') 设置画布
#设置一块大小为(12,6)的画布
plt.figure(figsize=(12, 6)) 输出图形
#整体图形背景样式,共5种:"white", "dark", "whitegrid", "darkgrid", "ticks"
sns.set_style('white')
#以条形图为例输出图形
sns.barplot(x=x,y=y,data=dataset,...)
'''
barplot()括号里的是需要设置的具体参数,
涉及到数据、颜色、坐标轴、以及具体图形的一些控制变量,
基本的一些参数包括'x'、'y'、'data',分别表示x轴,y轴,
以及选择的数据集。
''' 保存图形
#将画布保存为png、jpg、svg等格式图片
plt.savefig('jg.png') 实战
#数据准备
df = pd.read_csv('./cook.csv') #读取数据集(「菜J学Python」公众号后台回复cook获取)
df['难度'] = df['用料数'].apply(lambda x:'简单' if x<5 else('一般' if x<15 else '较难')) #增加难度字段
df = df[['菜谱','用料','用料数','难度','菜系','评分','用户']] #选择需要的列
df.sample(5) #查看数据集的随机5行数据 #导入相关包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置加载的字体名
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
sns.set_style('white') #设置图形背景样式为white 直方图
#语法
'''
seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None,
hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None,
vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)
'''
#distplot()输出直方图,默认拟合出密度曲线
plt.figure(figsize=(10, 6)) #设置画布大小
rate = df['评分']
sns.distplot(rate,color="salmon",bins=20) #参数color样式为salmon,bins参数设定数据片段的数量 #kde参数设为False,可去掉拟合的密度曲线
plt.figure(figsize=(10, 6))
sns.distplot(rate,kde=False,color="salmon",bins=20) #设置rug参数,可添加观测数值的边际毛毯
fig,axes=plt.subplots(1,2,figsize=(10,6)) #为方便对比,创建一个1行2列的画布,figsize设置画布大小
sns.distplot(rate,color="salmon",bins=10,ax=axes[0]) #axes[0]表示第一张图(左图)
sns.distplot(rate,color="green",bins=10,rug=True,ax=axes[1]) #axes[1]表示第一张图(右图) #多个参数可通过字典传递
fig,axes=plt.subplots(1,2,figsize=(10,6))
sns.distplot(rate,color="salmon",bins=20,rug=True,ax=axes[0])
sns.distplot(rate,rug=True,
hist_kws={'color':'g','label':'直方图'},
kde_kws={'color':'b','label':'密度曲线'},
bins=20,
ax=axes[1]) 散点图
常规散点图:scatterplot
#语法
'''
seaborn.scatterplot(x=None, y=None, hue=None, style=None, size=None,
data=None, palette=None, hue_order=None, hue_norm=None, sizes=None,
size_order=None, size_norm=None, markers=True, style_order=None, x_bins=None,
y_bins=None, units=None, estimator=None, ci=95, n_boot=1000, alpha='auto',
x_jitter=None, y_jitter=None, legend='brief', ax=None, **kwargs)
'''
fig,axes=plt.subplots(1,2,figsize=(10,6))
#hue参数,对数据进行细分
sns.scatterplot(x="用料数", y="评分",hue="难度",data=df,ax=axes[0])
#style参数通过不同的颜色和标记显示分组变量
sns.scatterplot(x="用料数", y="评分",hue="难度",style='难度',data=df,ax=axes[1]) 分簇散点图:stripplot
#语法
'''
seaborn.stripplot(x=None, y=None, hue=None, data=None, order=None,
hue_order=None, jitter=True, dodge=False, orient=None, color=None,
palette=None, size=5, edgecolor='gray', linewidth=0, ax=None, **kwargs)
'''
#设置jitter参数控制抖动的大小
plt.figure(figsize=(10, 6))
sns.stripplot(x="菜系", y="评分",hue="难度",jitter=1,data=df) 分类散点图:swarmplot
#绘制分类散点图(带分布属性)
#语法
'''
seaborn.swarmplot(x=None, y=None, hue=None, data=None, order=None,
hue_order=None, dodge=False, orient=None, color=None, palette=None,
size=5, edgecolor='gray', linewidth=0, ax=None, **kwargs)
'''
plt.figure(figsize=(10, 6))
sns.swarmplot(x="菜系", y="评分",hue="难度",data=df) 条形图
常规条形图:barplot
#语法
'''
seaborn.barplot(x=None, y=None, hue=None, data=None, order=None,
hue_order=None,ci=95, n_boot=1000, units=None, orient=None, color=None,
palette=None, saturation=0.75, errcolor='.26', errwidth=None, capsize=None,
ax=None, estimator=<function mean>,**kwargs)
'''
#barplot()默认展示的是某种变量分布的平均值(可通过修改estimator参数为max、min、median等)
# from numpy import median
fig,axes=plt.subplots(1,2,figsize=(10,6))
sns.barplot(x='菜系',y='评分',color="r",data=df,ax=axes[0])
sns.barplot(x='菜系',y='评分',color="salmon",data=df,estimator=min,ax=axes[1]) fig,axes=plt.subplots(1,2,figsize=(10,6))
#设置hue参数,对x轴的数据进行细分
sns.barplot(x='菜系',y='评分',color="salmon",hue='难度',data=df,ax=axes[0])
#调换x和y的顺序,可将纵向条形图转为水平条形图
sns.barplot(x='评分',y='菜系',color="salmon",hue='难度',data=df,ax=axes[1]) 计数条形图:countplot
#语法'''seaborn.countplot(x=None, y=None, hue=None, data=None, order=None,hue_order=None, orient=None, color=None, palette=None, saturation=0.75, dodge=True, ax=None, **kwargs)'''fig,axes=plt.subplots(1,2,figsize=(10,6))#选定某个字段,countplot()会自动统计该字段下各类别的数目sns.countplot(x='菜系',color="salmon",data=df,ax=axes[0])#同样可以加入hue参数sns.countplot(x='菜系',color="salmon",hue='难度',data=df,ax=axes[1])折线图
#语法
'''
seaborn.lineplot(x=None, y=None, hue=None, size=None, style=None,
data=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None,
size_norm=None, dashes=True, markers=None, style_order=None, units=None, estimator='mean',
ci=95, n_boot=1000, sort=True, err_style='band', err_kws=None, legend='brief', ax=None, **kwargs)
'''
fig,axes=plt.subplots(1,2,figsize=(10,6))
#默认折线图有聚合
sns.lineplot(x="用料数", y="评分", hue="菜系",data=df,ax=axes[0])
#estimator参数设置为None可取消聚合
sns.lineplot(x="用料数", y="评分", hue="菜系",estimator=None,data=df,ax=axes[1]) 箱图
箱线图:boxplot
#语法
'''
seaborn.boxplot(x=None, y=None, hue=None, data=None, order=None,
hue_order=None, orient=None, color=None, palette=None, saturation=0.75,
width=0.8, dodge=True, fliersize=5, linewidth=None, whis=1.5, notch=False, ax=None, **kwargs)
'''
fig,axes=plt.subplots(1,2,figsize=(10,6))
sns.boxplot(x='菜系',y='评分',hue='难度',data=df,ax=axes[0])
#调节order和hue_order参数,可以控制x轴展示的顺序,linewidth调节线宽
sns.boxplot(x='菜系',y='评分',hue='难度',data=df,color="salmon",linewidth=1,
order=['清真菜','粤菜','东北菜','鲁菜','浙菜','湖北菜','川菜'],
hue_order=['简单','一般','较难'],ax=axes[1]) 箱型图:boxenplot
#语法
'''
seaborn.boxenplot(x=None, y=None, hue=None, data=None, order=None,
hue_order=None, orient=None, color=None, palette=None, saturation=0.75,
width=0.8, dodge=True, k_depth='proportion', linewidth=None, scale='exponential',
outlier_prop=None, ax=None, **kwargs)
'''
fig,axes=plt.subplots(1,2,figsize=(10,6))
sns.boxenplot(x='菜系',y='评分',hue='难度',data=df,color="salmon",ax=axes[0])
#palette参数可设置调色板
sns.boxenplot(x='菜系',y='评分',hue='难度',data=df, palette="Set2",ax=axes[1]) 小提琴图
#语法
'''
seaborn.violinplot(x=None, y=None, hue=None, data=None, order=None,
hue_order=None, bw='scott', cut=2, scale='area', scale_hue=True,
gridsize=100, width=0.8, inner='box', split=False, dodge=True, orient=None,
linewidth=None, color=None, palette=None, saturation=0.75, ax=None, **kwargs)
'''
fig,axes=plt.subplots(1,2,figsize=(10,6))
sns.violinplot(x='菜系',y='评分',data=df, color="salmon",linewidth=1,ax=axes[0])
#inner参数可在小提琴内部添加图形,palette设置颜色渐变
sns.violinplot(x='菜系',y='评分',data=df,palette=sns.color_palette('Greens'),inner='stick',ax=axes[1]) 回归图
regplot
'''
seaborn.regplot(x, y, data=None, x_estimator=None, x_bins=None, x_ci='ci',
scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None,
order=1, logistic=False, lowess=False, robust=False, logx=False,
x_partial=None, y_partial=None, truncate=False, dropna=True,
x_jitter=None, y_jitter=None, label=None, color=None, marker='o',
scatter_kws=None, line_kws=None, ax=None)
'''
fig,axes=plt.subplots(1,2,figsize=(10,6))
#marker参数可设置数据点的形状
sns.regplot(x='用料数',y='评分',data=df,color='r',marker='+',ax=axes[0])
#ci参数设置为None可去除直线附近阴影(置信区间)
sns.regplot(x='用料数',y='评分',data=df,ci=None,color='g',marker='*',ax=axes[1]) lmplot
#语法
'''
seaborn.lmplot(x, y, data, hue=None, col=None, row=None, palette=None,
col_wrap=None, height=5, aspect=1, markers='o', sharex=True,
sharey=True, hue_order=None, col_order=None, row_order=None,
legend=True, legend_out=True, x_estimator=None, x_bins=None,
x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000,
units=None, order=1, logistic=False, lowess=False, robust=False,
logx=False, x_partial=None, y_partial=None, truncate=False,
x_jitter=None, y_jitter=None, scatter_kws=None, line_kws=None, size=None)
'''
#lmplot()可以设置hue,进行多个类别的显示,而regplot()是不支持的
sns.lmplot(x='用料数',y='评分',hue='难度',data=df,
palette=sns.color_palette('Reds'),ci=None,markers=['*','o','+']) 热力图
#语法
'''
seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None,
robust=False, annot=None, fmt='.2g', annot_kws=None,
linewidths=0, linecolor='white', cbar=True, cbar_kws=None,
cbar_ax=None, square=False, xticklabels='auto',
yticklabels='auto', mask=None, ax=None, **kwargs)
'''
fig,axes=plt.subplots(1,2,figsize=(10,6))
h=pd.pivot_table(df,index=['菜系'],columns=['难度'],values=['评分'],aggfunc=np.mean)
sns.heatmap(h,ax=axes[0])
#annot参数设置为True可显示数字,cmap参数可设置热力图调色板
cmap = sns.diverging_palette(200,20,sep=20,as_cmap=True)
sns.heatmap(h,annot=True,cmap=cmap,ax=axes[1])
#保存图形
plt.savefig('jg.png') 作者:python开发者
原文链接:https://mp.weixin.qq.com/s/G4UE6w6WQcR_4GLCvf10OA
相关推荐
- 红警2共和国之辉免费下载(手机版共和国之辉下载)
-
红警2共和国之辉下载方法如下1、首先打开电脑上的浏览器,在地址栏输入红警之家在官网的地址。2、点击地址栏后面的Go选项进入官网,红警之家,然后点击民国特别选项。3、单击立即下载选项,然后单击弹出页面上...
- gif制作软件app(gif制作软件app推荐)
-
我有一个制作gif动画的exe软件,在电脑上直接打开就能用,如果需要,我可以发你哦!以下手机软件可以给GIF图片加文字:1、GIF制作appGIF制作app是一款专业编辑Gif文件工具,它可以实现gi...
- ai绘图免费软件(ai制图软件免费)
-
推荐使用Procreate应用程序1因为它是一款功能强大的应用程序,具有出色的绘图和动画工具。2Procreate可以在iPad上使用,具有高质量的分辨率和颜色深度,可以创建出色的动画效果。3...
-
- 强力恢复数据软件免费版(强力数据恢复软件多少钱)
-
效果还是不错的,如果你的苹果手机有重要的数学不小心丟失了,就可以通过强力苹果恢复精灵找回来,而且真对手机不同的数据,都是非常到位的分类包括通讯类,图片以及其他三大版快若您要存储机身内存文件,聊天记录及连系人不慎删除且没有提前备份数据,那个...
-
2026-01-19 04:51 off999
- 魔兽地图下载网址(魔兽地图下载网址是什么)
-
魔兽地图可以通过以下步骤进行下载:打开魔兽地图下载网站,如hiveworkshop.com、epicwar.com等。在网站上搜索您想要下载的地图名称或关键词。找到您想要下载的地图后,点击下载按钮或链...
- qq阅读免费版下载(qq阅读免费版下载2019)
-
有免费栏目,但是一般里面的书都不是很好看。然后有的好看的书有免费章节,比如前面60章是免费的,后面的就开始收费。个人建议,可以开个QQ阅读的会员,QQ阅读会员就有专门的免费专区,里面每周都会更新很多的...
- 实时变声器(实时变声器下载)
-
有不少安卓免费变声器软件推荐MorphVOXPro中文版。这是一款非常有趣的语音变声器软件,程序的主要功能可以帮助你在上网用QQ、YY、Skype网络电话或者其他聊天工具进行语音聊天时随心所欲的变换...
- 汉语大词典电子版(汉语大词典电子版pdf)
-
《汉语大字典》是当今世界上规模最大、收集汉字单字最多、释义最全的一部汉语字典。全书约2000万字,共收单字56000多个,几乎包括了各种古今文献和图书资料中出现的所有汉字,可以说是汉语字典的集大成者...
- 免费照片处理软件app(免费照片处理软件哪个最好)
-
首先打开Photoshop,导入一张照片点击打开打开照片之后,同时按ctrl+j复制一个图层在菜单栏里面选择“滤镜”——“锐化”——“智能锐化”适当将锐化的半径调高一些,勾选“更加精确”锐化后放大图片...
- 免费的ps电脑软件(免费的ps电脑软件有哪些)
-
.任何一个版本都不是免费的,但基本所有版本都有破解版或者绿色版,可以去360软件管家里面下载或者电脑管家里也有,最新版的是PSCC版。photoshop是adobe公司旗下的产品,正确来说,购买正...
- 照片恢复(照片恢复免费版下载)
-
方法/步骤 1.首先下载一个数据恢复软件。 2.安装到电脑上,然后把手机和电脑连接起来。 3.接着我们用下载好的数据恢复软件扫描手机。 4.然后找出要恢复的文件照片。 5.在电脑上选在一个磁...
- tiktok官方网站入口(tiktok官方网站入口免费)
-
入口就是TikTok商店卖家。具体步骤如下:为了加入TikTok商店,您首先需要一个TikTok帐户。一旦您拥有TikTok帐户并且超过了符合条件的年龄,就可以使用它注册为TikTok商店卖家。卖家...
- adobe flash player播放器(adobe flash player viewer)
-
不同操作系统不同浏览器,开启Adobeflashplayer的方法各有不同。开启的前提当然是正确安装喽,不同操作系统不同浏览器安装Adobeflashplayer方法也是各不相同的。Wind...
欢迎 你 发表评论:
- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
