百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

我用Python的Seaborn库,绘制了17个超好看图表

off999 2024-10-31 14:04 15 浏览 0 评论

推荐学习

Seaborn简介

定义

Seaborn是一个基于matplotlib且数据结构与pandas统一的统计图制作库。Seaborn框架旨在以数据可视化为中心来挖掘与理解数据。

优点

  1. 代码较少
  2. 图形美观
  3. 功能齐全
  4. 主流模块安装

pip命令安装

pip install matplotlib  
pip install seaborn  

从github安装

pip install git+https://github.com/mwaskom/seaborn.git  

流程

导入绘图模块

mport matplotlib.pyplot as plt  
import seaborn as sns  

提供显示条件

%matplotlib inline  #在Jupyter中正常显示图形  

导入数据

#Seaborn内置数据集导入  
dataset = sns.load_dataset('dataset')  
  
#外置数据集导入(以csv格式为例)  
dataset = pd.read_csv('dataset.csv')  

设置画布

#设置一块大小为(12,6)的画布  
plt.figure(figsize=(12, 6))  

输出图形

#整体图形背景样式,共5种:"white", "dark", "whitegrid", "darkgrid", "ticks"  
sns.set_style('white')  
  
#以条形图为例输出图形  
sns.barplot(x=x,y=y,data=dataset,...)  
  
'''  
barplot()括号里的是需要设置的具体参数,  
涉及到数据、颜色、坐标轴、以及具体图形的一些控制变量,  
基本的一些参数包括'x'、'y'、'data',分别表示x轴,y轴,  
以及选择的数据集。  
'''  

保存图形

#将画布保存为png、jpg、svg等格式图片  
plt.savefig('jg.png')  

实战

#数据准备  
df = pd.read_csv('./cook.csv') #读取数据集(「菜J学Python」公众号后台回复cook获取)  
df['难度'] = df['用料数'].apply(lambda x:'简单' if x<5 else('一般' if x<15  else '较难')) #增加难度字段  
df = df[['菜谱','用料','用料数','难度','菜系','评分','用户']] #选择需要的列  
df.sample(5)  #查看数据集的随机5行数据  
#导入相关包  
import numpy as np  
import pandas as pd  
import matplotlib.pyplot as plt  
import matplotlib as mpl  
import seaborn as sns  
%matplotlib inline  
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置加载的字体名  
plt.rcParams['axes.unicode_minus'] = False    # 解决保存图像是负号'-'显示为方块的问题  
sns.set_style('white')   #设置图形背景样式为white  

直方图

#语法  
'''  
seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None,  
hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None,  
vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)  
'''  
  
#distplot()输出直方图,默认拟合出密度曲线  
plt.figure(figsize=(10, 6)) #设置画布大小  
rate = df['评分']  
sns.distplot(rate,color="salmon",bins=20) #参数color样式为salmon,bins参数设定数据片段的数量  
#kde参数设为False,可去掉拟合的密度曲线  
plt.figure(figsize=(10, 6))  
sns.distplot(rate,kde=False,color="salmon",bins=20)  
#设置rug参数,可添加观测数值的边际毛毯  
fig,axes=plt.subplots(1,2,figsize=(10,6)) #为方便对比,创建一个1行2列的画布,figsize设置画布大小  
  
sns.distplot(rate,color="salmon",bins=10,ax=axes[0]) #axes[0]表示第一张图(左图)  
  
sns.distplot(rate,color="green",bins=10,rug=True,ax=axes[1]) #axes[1]表示第一张图(右图)  
#多个参数可通过字典传递  
fig,axes=plt.subplots(1,2,figsize=(10,6))  
sns.distplot(rate,color="salmon",bins=20,rug=True,ax=axes[0])  
  
sns.distplot(rate,rug=True,  
                     hist_kws={'color':'g','label':'直方图'},  
                     kde_kws={'color':'b','label':'密度曲线'},  
                     bins=20,  
                     ax=axes[1])  

散点图

常规散点图:scatterplot

#语法  
'''  
seaborn.scatterplot(x=None, y=None, hue=None, style=None, size=None,  
data=None, palette=None, hue_order=None, hue_norm=None, sizes=None,  
size_order=None, size_norm=None, markers=True, style_order=None, x_bins=None,  
y_bins=None, units=None, estimator=None, ci=95, n_boot=1000, alpha='auto',  
x_jitter=None, y_jitter=None, legend='brief', ax=None, **kwargs)  
'''  
  
fig,axes=plt.subplots(1,2,figsize=(10,6))  
#hue参数,对数据进行细分  
sns.scatterplot(x="用料数", y="评分",hue="难度",data=df,ax=axes[0])  
  
#style参数通过不同的颜色和标记显示分组变量  
sns.scatterplot(x="用料数", y="评分",hue="难度",style='难度',data=df,ax=axes[1])  

分簇散点图:stripplot

#语法  
'''  
seaborn.stripplot(x=None, y=None, hue=None, data=None, order=None,  
hue_order=None, jitter=True, dodge=False, orient=None, color=None,  
palette=None, size=5, edgecolor='gray', linewidth=0, ax=None, **kwargs)  
'''  
  
#设置jitter参数控制抖动的大小  
plt.figure(figsize=(10, 6))  
sns.stripplot(x="菜系", y="评分",hue="难度",jitter=1,data=df)  

分类散点图:swarmplot

#绘制分类散点图(带分布属性)  
#语法  
'''  
seaborn.swarmplot(x=None, y=None, hue=None, data=None, order=None,  
hue_order=None, dodge=False, orient=None, color=None, palette=None,  
size=5, edgecolor='gray', linewidth=0, ax=None, **kwargs)  
'''  
  
plt.figure(figsize=(10, 6))  
sns.swarmplot(x="菜系", y="评分",hue="难度",data=df)  

条形图

常规条形图:barplot

#语法  
'''  
seaborn.barplot(x=None, y=None, hue=None, data=None, order=None,  
hue_order=None,ci=95, n_boot=1000, units=None, orient=None, color=None,  
palette=None, saturation=0.75, errcolor='.26', errwidth=None, capsize=None,  
ax=None, estimator=<function mean>,**kwargs)  
'''  
  
#barplot()默认展示的是某种变量分布的平均值(可通过修改estimator参数为max、min、median等)  
# from numpy import median  
fig,axes=plt.subplots(1,2,figsize=(10,6))  
sns.barplot(x='菜系',y='评分',color="r",data=df,ax=axes[0])  
  
sns.barplot(x='菜系',y='评分',color="salmon",data=df,estimator=min,ax=axes[1])  
fig,axes=plt.subplots(1,2,figsize=(10,6))  
#设置hue参数,对x轴的数据进行细分  
sns.barplot(x='菜系',y='评分',color="salmon",hue='难度',data=df,ax=axes[0])  
#调换x和y的顺序,可将纵向条形图转为水平条形图  
sns.barplot(x='评分',y='菜系',color="salmon",hue='难度',data=df,ax=axes[1])  

计数条形图:countplot

#语法'''seaborn.countplot(x=None, y=None, hue=None, data=None, order=None,hue_order=None, orient=None, color=None, palette=None, saturation=0.75, dodge=True, ax=None, **kwargs)'''fig,axes=plt.subplots(1,2,figsize=(10,6))#选定某个字段,countplot()会自动统计该字段下各类别的数目sns.countplot(x='菜系',color="salmon",data=df,ax=axes[0])#同样可以加入hue参数sns.countplot(x='菜系',color="salmon",hue='难度',data=df,ax=axes[1])

折线图

#语法  
'''  
seaborn.lineplot(x=None, y=None, hue=None, size=None, style=None,  
data=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None,  
size_norm=None, dashes=True, markers=None, style_order=None, units=None, estimator='mean',  
ci=95, n_boot=1000, sort=True, err_style='band', err_kws=None, legend='brief', ax=None, **kwargs)  
'''  
  
fig,axes=plt.subplots(1,2,figsize=(10,6))  
#默认折线图有聚合  
sns.lineplot(x="用料数", y="评分", hue="菜系",data=df,ax=axes[0])  
  
#estimator参数设置为None可取消聚合  
sns.lineplot(x="用料数", y="评分", hue="菜系",estimator=None,data=df,ax=axes[1])  

箱图

箱线图:boxplot

#语法  
'''  
seaborn.boxplot(x=None, y=None, hue=None, data=None, order=None,  
hue_order=None, orient=None, color=None, palette=None, saturation=0.75,  
width=0.8, dodge=True, fliersize=5, linewidth=None, whis=1.5, notch=False, ax=None, **kwargs)  
'''  
fig,axes=plt.subplots(1,2,figsize=(10,6))  
sns.boxplot(x='菜系',y='评分',hue='难度',data=df,ax=axes[0])  
  
#调节order和hue_order参数,可以控制x轴展示的顺序,linewidth调节线宽  
sns.boxplot(x='菜系',y='评分',hue='难度',data=df,color="salmon",linewidth=1,  
                    order=['清真菜','粤菜','东北菜','鲁菜','浙菜','湖北菜','川菜'],  
                    hue_order=['简单','一般','较难'],ax=axes[1])   

箱型图:boxenplot

#语法  
'''  
seaborn.boxenplot(x=None, y=None, hue=None, data=None, order=None,  
hue_order=None, orient=None, color=None, palette=None, saturation=0.75,  
width=0.8, dodge=True, k_depth='proportion', linewidth=None, scale='exponential',  
outlier_prop=None, ax=None, **kwargs)  
'''  
  
fig,axes=plt.subplots(1,2,figsize=(10,6))  
sns.boxenplot(x='菜系',y='评分',hue='难度',data=df,color="salmon",ax=axes[0])  
  
#palette参数可设置调色板  
sns.boxenplot(x='菜系',y='评分',hue='难度',data=df, palette="Set2",ax=axes[1])  

小提琴图

#语法  
'''  
seaborn.violinplot(x=None, y=None, hue=None, data=None, order=None,  
hue_order=None, bw='scott', cut=2, scale='area', scale_hue=True,  
gridsize=100, width=0.8, inner='box', split=False, dodge=True, orient=None,  
linewidth=None, color=None, palette=None, saturation=0.75, ax=None, **kwargs)  
'''  
  
fig,axes=plt.subplots(1,2,figsize=(10,6))  
sns.violinplot(x='菜系',y='评分',data=df, color="salmon",linewidth=1,ax=axes[0])  
#inner参数可在小提琴内部添加图形,palette设置颜色渐变  
sns.violinplot(x='菜系',y='评分',data=df,palette=sns.color_palette('Greens'),inner='stick',ax=axes[1])  

回归图

regplot

'''  
seaborn.regplot(x, y, data=None, x_estimator=None, x_bins=None, x_ci='ci',  
                scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None,  
                order=1, logistic=False, lowess=False, robust=False, logx=False,  
                x_partial=None, y_partial=None, truncate=False, dropna=True,  
                x_jitter=None, y_jitter=None, label=None, color=None, marker='o',  
                scatter_kws=None, line_kws=None, ax=None)  
'''  
  
fig,axes=plt.subplots(1,2,figsize=(10,6))  
#marker参数可设置数据点的形状  
sns.regplot(x='用料数',y='评分',data=df,color='r',marker='+',ax=axes[0])  
#ci参数设置为None可去除直线附近阴影(置信区间)  
sns.regplot(x='用料数',y='评分',data=df,ci=None,color='g',marker='*',ax=axes[1])  

lmplot

#语法  
'''  
seaborn.lmplot(x, y, data, hue=None, col=None, row=None, palette=None,  
               col_wrap=None, height=5, aspect=1, markers='o', sharex=True,  
               sharey=True, hue_order=None, col_order=None, row_order=None,  
               legend=True, legend_out=True, x_estimator=None, x_bins=None,  
               x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000,  
               units=None, order=1, logistic=False, lowess=False, robust=False,  
               logx=False, x_partial=None, y_partial=None, truncate=False,  
               x_jitter=None, y_jitter=None, scatter_kws=None, line_kws=None, size=None)  
'''  
  
#lmplot()可以设置hue,进行多个类别的显示,而regplot()是不支持的  
sns.lmplot(x='用料数',y='评分',hue='难度',data=df,  
           palette=sns.color_palette('Reds'),ci=None,markers=['*','o','+'])  

热力图

#语法  
'''  
seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None,  
                robust=False, annot=None, fmt='.2g', annot_kws=None,  
                linewidths=0, linecolor='white', cbar=True, cbar_kws=None,  
                cbar_ax=None, square=False, xticklabels='auto',  
                yticklabels='auto', mask=None, ax=None, **kwargs)  
'''  
  
fig,axes=plt.subplots(1,2,figsize=(10,6))  
h=pd.pivot_table(df,index=['菜系'],columns=['难度'],values=['评分'],aggfunc=np.mean)  
sns.heatmap(h,ax=axes[0])  
  
#annot参数设置为True可显示数字,cmap参数可设置热力图调色板  
cmap = sns.diverging_palette(200,20,sep=20,as_cmap=True)  
sns.heatmap(h,annot=True,cmap=cmap,ax=axes[1])  
#保存图形  
plt.savefig('jg.png')  

作者:python开发者

原文链接:https://mp.weixin.qq.com/s/G4UE6w6WQcR_4GLCvf10OA

相关推荐

推荐一款Python的GUI可视化工具(python 可视化工具)

在Python基础语法学习完成后,进一步开发应用界面时,就需要涉及到GUI了,GUI全称是图形用户界面(GraphicalUserInterface,又称图形用户接口),采用图形方式显示的计算机操...

教你用Python绘制谷歌浏览器的3种图标

前两天在浏览matplotlib官方网站时,笔者无意中看到一个挺有意思的图片,就是用matplotlib制作的火狐浏览器的logo,也就是下面这个东东(网页地址是https://matplotlib....

小白学Python笔记:第二章 Python安装

Windows操作系统的python安装:Python提供Windows、Linux/UNIX、macOS及其他操作系统的安装包版本,结合自己的使用情况,此处仅记录windows操作系统的python...

Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字

Python程序开发之简单小程序实例(9)利用Canvas绘制图形和文字一、项目功能利用Tkinter组件中的Canvas绘制图形和文字。二、项目分析要在窗体中绘制图形和文字,需先导入Tkinter组...

一文吃透Python虚拟环境(python虚拟环境安装和配置)

摘要在Python开发中,虚拟环境是一种重要的工具,用于隔离不同项目的依赖关系和环境配置。本文将基于windows平台介绍四种常用的Python虚拟环境创建工具:venv、virtualenv、pip...

小白也可以玩的Python爬虫库,收藏一下

最近,微软开源了一个项目叫「playwright-python」,作为一个兴起项目,出现后受到了大家热烈的欢迎,那它到底是什么样的存在呢?今天为你介绍一下这个传说中的小白神器。Playwright是...

python环境安装+配置教程(python安装后怎么配置环境变量)

安装python双击以下软件:弹出一下窗口需选择一些特定的选项默认选项不需要更改,点击next勾选以上选项,点击install进度条安装完毕即可。到以下界面,证明安装成功。接下来安装库文件返回电脑桌面...

colorama,一个超好用的 Python 库!

大家好,今天为大家分享一个超好用的Python库-colorama。Github地址:https://github.com/tartley/coloramaPythoncolorama库是一...

python制作仪表盘图(python绘制仪表盘)

今天教大家用pyecharts画仪表盘仪表盘(Gauge)是一种拟物化的图表,刻度表示度量,指针表示维度,指针角度表示数值。仪表盘图表就像汽车的速度表一样,有一个圆形的表盘及相应的刻度,有一个指针...

总结90条写Python程序的建议(python写作)

  1.首先  建议1、理解Pythonic概念—-详见Python中的《Python之禅》  建议2、编写Pythonic代码  (1)避免不规范代码,比如只用大小写区分变量、使用容易...

[oeasy]python0137_相加运算_python之禅_import_this_显式转化

变量类型相加运算回忆上次内容上次讲了是从键盘输入变量input函数可以有提示字符串需要有具体的变量接收输入的字符串输入单个变量没有问题但是输入两个变量之后一相加就非常离谱添加图片注释,不超过1...

Python入门学习记录之一:变量(python中变量的规则)

写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...

掌握Python的&quot;魔法&quot;:特殊方法与属性完全指南

在Python的世界里,以双下划线开头和结尾的"魔法成员"(如__init__、__str__)是面向对象编程的核心。它们赋予开发者定制类行为的超能力,让自定义对象像内置类型一样优雅工...

11个Python技巧 不Pythonic 实用大于纯粹

虽然Python有一套强大的设计哲学(体现在“Python之禅”中),但总有一些情况需要我们“打破规则”来解决特定问题。这触及了Python哲学中一个非常核心的理念:“实用主义胜于纯粹主义”...

Python 从入门到精通 第三课 诗意的Python之禅

导言:Python之禅,英文名是TheZenOfPython。最早由TimPeters在Python邮件列表中发表,它包含了影响Python编程语言设计的20条软件编写原则。它作为复活节彩蛋...

取消回复欢迎 发表评论: