2020拼多多秋招Python笔试题解丨内附代码
off999 2024-11-19 08:45 32 浏览 0 评论
欢迎点击右上角关注小编,除了分享技术文章之外还有很多福利,私信01可以领取包括不限于Python实战演练、PDF电子文档、面试集锦、学习资料等。
T1
问题:
炎炎夏日,多多实在太无聊了,唯有学习才能保持内心的安宁。多多最近在学习矩阵知识,但他遇到了一类奇怪的矩阵。因此想把矩阵打印出来好好观察。对于一个n阶矩阵,首先用米字型分割线把矩阵等分为8个区域,然后从右上角开始,按照逆时针顺序给区域编号1,2,……,8
思路:
将矩阵分为四个block,然后循环判断,最后拼接。
代码:
import numpy as np
def T1(n):
if n < 4:
return [[0 for i in range(n)] for j in range(n)]
num = n // 2
block1 = [[0 for i in range(num)] for j in range(num)]
for i in range(num-1):
for j in range(i+1, num):
block1[i][j] = 2
block1[j][i] = 3
block2 = [[0 for i in range(num)] for j in range(num)]
for i in range(num-1):
for j in range(num-1 - i):
block2[i][j] = 4
for i in range(num-1, 0, -1):
for j in range(num-1, num - 1 - i, -1):
block2[i][j] = 5
block3 = [[0 for i in range(num)] for j in range(num)]
for i in range(num-1):
for j in range(i+1, num):
block3[i][j] = 7
block3[j][i] = 6
block4 = [[0 for i in range(num)] for j in range(num)]
for i in range(num-1):
for j in range(num-1 - i):
block4[i][j] = 1
for i in range(num-1, 0, -1):
for j in range(num-1, num - 1 - i, -1):
block4[i][j] = 8
if n % 2: #奇数需要添加零
hzero = [[0] for i in range(num)]
vzero = [0 for i in range(n)]
a = np.hstack((block1, hzero, block4))
b = np.hstack((block2, hzero, block3))
result = np.vstack((a, vzero, b))
else:
a = np.hstack((block1, block4))
b = np.hstack((block2, block3))
result = np.vstack((a,b))
return result
T2
问题:
多多最近在玩一款叫做《野蛮六》的回合制策略游戏。在这个游戏中,地图可以视为一个NM的矩阵,划分为NM个正方形的格子。一个格子的上下左右4个格子视为与该格子相邻。玩家可以在每个格子上布置一个士兵。并且每个士兵可以和相邻的士兵归为同一队伍。在这个游戏中,同一队伍的士兵数量越多,就越强大。多多现在有一个道具可以移动任意一个格子上的士兵到任意一个空格子中。求移动后可得到的最大士兵数量。
思路:
Leetcode最大人工岛 link.
dfs将图中队伍进行编号和计数{编号:数量}
遍历0点,将周围队伍的数量相加
和leetcode不太一样的是,本题是移动一个1而不是将0变为1。如果队伍数量和与图中所有队伍数量相等,士兵就是从本队伍移动不加1;否则士兵是从其它队伍移来,队伍数量加1。
代码:
def largestIsland(self, grid) -> int:
def dfs(i, j, grid, numorder):
if i < 0 or i >= len(grid) or j < 0 or j >= len(grid[0]):
return 0
if grid[i][j] != 1:
return 0
grid[i][j] = numorder
return 1 + dfs(i - 1, j, grid, numorder) + dfs(i + 1, j, grid, numorder) + dfs(i, j - 1, grid, numorder) + dfs(
i, j + 1, grid, numorder)
index = 2
land = {}
totalareas = 0
maxland = 0
for i in range(len(grid)):
for j in range(len(grid[0])):
if grid[i][j] == 1:
land[index] = dfs(i, j, grid, index)
totalareas += land[index]
maxland = max(maxland, land[index])
index += 1
maxarea = 0
for i in range(len(grid)):
for j in range(len(grid[0])):
if grid[i][j] == 0:
tmp = set()
tmpsum = 0
if i > 0: tmp.add(grid[i - 1][j])
if i < len(grid) - 1: tmp.add(grid[i + 1][j])
if j > 0: tmp.add(grid[i][j - 1])
if j < len(grid[0]) - 1: tmp.add(grid[i][j + 1])
tmp = list(tmp)
for k in range(len(tmp)):
tmpsum += land.get(tmp[k], 0)
maxarea = max(maxarea, tmpsum)
maxarea = max(maxland, maxarea)
if maxarea == totalareas:
return maxarea
else:
return maxarea + 1
T3
问题:
在神奇的一天,多多背着一个神奇的背包来到一个神奇的商店,商店里有N个神奇的商品。商店让多多挑任意个商品放入背包带走。多多发现,这些商品中有些会占用背包的一部分空间,但也有些商品反而会让背包变得更大。同时,这些商品中有些具有一定的收益,但也有些商品是负收益。多多想知道它今天能带走的最大收益是多少。
对于前60%的数据,商品占用的背包空间和商品的收益均为非负整数!
分析:
简单01背包可以60%解
带有负值的背包:物体体积是负数,表示加入它背包体积会变大。对于这种情况,我们先将背包体积扩容(默认上来背包中就有它们),然后将它们b变为相反数(负变正),之后进行01背包(如果在跑背包的时候,选择了它的相反数这个物体,表示把这个物体移除)
代码:
简单01背包
def Bag(n, weights, values, cap):
dplist = [0 for j in range(cap+1)]
for i in range(cap+1):
if weights[0] <= i:
dplist[i] = values[0]
for i in range(1, n):
for j in range(cap, -1, -1):
if weights[i] <= j:
dplist[j] = max(dplist[j], values[i] + dplist[j-weights[i]])
return dplist[cap]
存在负重量、负价值的背包问题
def Bag2(n, weights, values, cap):
ans = 0
for i in range(n):
if weights[i] < 0:
ans += values[i]
cap -= weights[i]
weights[i] = -weights[i]
values[i] = -values[i]
dplist = [0 for j in range(cap+1)]
for i in range(cap+1):
if weights[0] <= i:
dplist[i] = values[0]
for i in range(1, n):
for j in range(cap, -1, -1):
if weights[i] <= j:
dplist[j] = max(dplist[j], values[i] + dplist[j-weights[i]])
return dplist[cap] + ans
T4
问题:
多多君最近在研究新的一组函数:
多多君认为,若某个正整数x可以被特征值集合中的某个数Y整除,那么这个正整数x是具有“显著特征”的。对于给定N和M,其中N表示正整数集合1-N中,一共有多少具有显著特征的数字。
1<=N<=1000000000,1<=M<=101<=N<=1000000000,1<=M<=10
M中数字yi,1<=yi<=20M中数字yi,1<=yi<=20
思路:
得到元素互斥的M序列
子序列全排列:二进制模拟数字是否存在(0不存在,1存在)
容斥原理:奇数长度相加,偶数长度相减
例如四个元素:A∪B∪C∪D=A+B+C+D﹣(A∩B+B∩C+C∩D+A∩C+A∩D+B∩D)+(A∩B∩C+A∩B∩D+B∩C∩D)﹣A∩B∩C∩DA∪B∪C∪D=A+B+C+D﹣(A∩B+B∩C+C∩D+A∩C+A∩D+B∩D)+(A∩B∩C+A∩B∩D+B∩C∩D)﹣A∩B∩C∩D
代码:
def T4(n, m, mlist):
if 1 in mlist:
return n
#得到元素互质的mlist
mlist.sort()
index = 0
while index != len(mlist) - 1:
tmp = []
for i in range(index+1, len(mlist)):
if mlist[i] % mlist[index] == 0:
tmp.append(mlist[i])
for i in tmp:
mlist.remove(i)
index += 1
#得到mlist的子序列全排列numlist
numlist = []
size = len(mlist)
end = 1 << size
for index in range(end):
arr = []
for j in range(size):
if (index >> j) % 2:
arr.append(mlist[j])
numlist.append(arr)
print(numlist)
#利用容斥原理,奇数长度加,偶数长度减
ans = 0
for i in numlist:
tmp = 1
for j in i:
tmp *= j
if len(i):
if len(i) == 1:
ans += n // tmp
elif len(i) % 2:
ans += n // tmp
else:
ans -= n // tmp
return ans
如有不对之处还请指正,谢谢大家!
最后多说一句,小编是一名python开发工程师,这里有我自己整理了一套最新的python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。想要这些资料的可以关注小编,并在后台私信小编:“01”即可领取。
相关推荐
- Kubernetes 核心概念全景图:Pod、Node、Cluster、Control Plane 等
-
想真正读懂Kubernetes的底层运作,你必须理解它的“权力架构”。Pod是什么?Node是什么?ControlPlane又是做什么的?它们之间有什么关系?怎么协同工作?本篇带你构建一个...
- Helm 实战:用 Helm 部署一个 Nginx 应用
-
这一篇,我们将动手实战:用Helm从零部署一个Nginx应用,并掌握HelmChart的结构和参数化技巧。一、准备环境在开始之前,你需要确保环境中具备以下工具:已部署的Kubernet...
- 从零开始:如何在 Linux 上搭建 Nginx + Node.js 高性能 Web 服务
-
在现代互联网服务架构中,Nginx+Node.js已成为轻量级、高性能网站的首选组合。本文将带你从零开始,一步步搭建一个高并发、高可用的Web服务平台,让新手也能轻松掌握生产级部署思路。一、...
- NetBox 最新版 4.4.1 完整安装指南
-
NetBox最新版4.4.1完整安装指南(修正版)by大牛蛙1.系统准备#关闭SELinux和防火墙(仅测试环境)systemctldisable--nowfirewalldse...
- Termux 安装 linux 宝塔面板,搭建 Nginx+PHP+Mysql web 网站环境
-
Termux安装linux宝塔面板,搭建Nginx+PHP+Mysqlweb服务环境,解决启动故障奶妈级教程1.到宝塔面板官网:https://www.bt.cn/new/download...
- OpenEuler系统安装Nginx安装配置_openwrt安装nginx
-
NginxWEB安装时可以指定很多的模块,默认需要安装Rewrite模块,也即是需要系统有PCRE库,安装Pcre支持Rewrite功能。如下为安装NginxWEB服务器方法:源码的路径,而不是编...
- 多级缓存架构实战:从OpenResty到Redis,打造毫秒级响应系统
-
在传统的Web架构中,当用户发起请求时,应用通常会直接查询数据库。这种模式在低并发场景下尚可工作,但当流量激增时,数据库很容易成为性能瓶颈。多级缓存通过在数据路径的不同层级设置缓存,可以显著降低数据库...
- 如何使用 Nginx 缓存提高网站性能 ?
-
快速加载的站点提供了更好的用户体验并且可以拥有更高的搜索引擎排名。通过Nginx缓存提高你的网站性能是一个有效的方法。Nginx是一个流行的开源web服务器,也可以作为web服务器反向代...
- 如何构建企业级Docker Registry Server
-
很多人问我,虚拟机镜像和docker镜像的区别是什么?其实区别非常明显,我们可以通过阅读Dockerfile文件就可以知道这个镜像都做了哪些操作,能提供什么服务;但通过虚拟机镜像,你能一眼看出来虚拟机...
- 如何解决局域网SSL证书问题?使用mkcert证书生成工具轻松搞定
-
“局域网里弹出‘不安全’红锁,老板就在身后盯着演示,那一刻只想原地消失。”别笑,九成前端都经历过。自签证书被Chrome标红,客户以为网站被黑,其实只是缺一张被信任的证。mkcert把这事从半小时缩到...
- Docker 安全与权限控制:别让你的容器变成“漏洞盒子”
-
在享受容器带来的轻量与灵活的同时,我们也必须面对一个现实问题:安全隐患。容器并不是天然安全,错误配置甚至可能让攻击者“越狱”入侵主机!本篇将带你从多个层面强化Docker的安全防护,构建真正可放心...
- Kubernetes生产级管理指南(2025版)
-
在云原生技术持续演进的2025年,Kubernetes已成为企业数字化转型的核心引擎。然而,生产环境中的集群管理仍面临基础设施配置、安全漏洞、运维复杂度攀升等挑战。本文将结合最新行业实践,从基础设施即...
- 云原生工程师日常使用最多的工具和100条高频命令
-
在云原生时代,工程师不仅要熟悉容器化、编排和服务网格,还要掌握大量工具和命令来进行日常运维与开发。本文将从工具篇和命令篇两个角度,详细介绍云原生工程师每天都会用到的核心技能。一、云原生工程师常...
- 用 Jenkins 实现自动化 CI/CD_jenkins api自动执行
-
场景设定(可替换为你的技术栈)语言:Node.js(示例简单,任何语言思路一致)制品:Docker镜像(推送到DockerHub/Harbor)运行环境:Kubernetes(staging...
- 5款好用开源云笔记虚拟主机部署项目推荐
-
在个人数据管理与协同办公场景中,开源云笔记项目凭借可自主部署、数据可控的优势,成为众多用户的首选。以下推荐5款适配虚拟主机部署、功能完善的开源项目,附核心特性与部署要点,助力快速搭建专属云笔记系统。...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Kubernetes 核心概念全景图:Pod、Node、Cluster、Control Plane 等
- Helm 实战:用 Helm 部署一个 Nginx 应用
- 从零开始:如何在 Linux 上搭建 Nginx + Node.js 高性能 Web 服务
- NetBox 最新版 4.4.1 完整安装指南
- Termux 安装 linux 宝塔面板,搭建 Nginx+PHP+Mysql web 网站环境
- OpenEuler系统安装Nginx安装配置_openwrt安装nginx
- 多级缓存架构实战:从OpenResty到Redis,打造毫秒级响应系统
- 如何使用 Nginx 缓存提高网站性能 ?
- 如何构建企业级Docker Registry Server
- 如何解决局域网SSL证书问题?使用mkcert证书生成工具轻松搞定
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)