百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Seaborn常见绘图总结-Categorical plots(分类图)

off999 2024-11-24 20:07 15 浏览 0 评论

上篇说到使用seaborn来绘制Relational plots(关系图),本篇来重点介绍Categorical plots(分类图)。

这里使用的数据还是seaborn的默认数据,理解数据的含义,对分析问题往往起着事半功倍的效果。

https://github.com/mwaskom/seaborn-data

Categorical plots(分类图)

  1. Categorical plots(分类图)可以具体分为下面三种类型,8个小图:
    stripplot(分布散点图)
    swarmplot(分布密度散点图)
  2. Categorical distribution plots(分类分布图)
    boxplot(箱线图)
    violinplot(小提琴图)
    boxenplot(字母价值图)
  3. Categorical estimate plots(分类估计图)
    pointplot(点图)
    barplot(条形图)
    countplot(计数统计图)

1 Categorical scatterplots(分类散点图)

1.1 stripplot(分布散点图)

stripplot(分布散点图)的意思就是按照不同类别对样本数据进行分布散点图绘制。stripplot(分布散点图)一般并不单独绘制,它常常与boxplot和violinplot联合起来绘制,作为这两种图的补充。

seaborn.stripplot(x=None, y=None, hue=None, data=None, order=None,hue_order=None, jitter=True, dodge=False, orient=None, color=None,palette=None, size=5, edgecolor='gray', linewidth=0, ax=None, **kwargs)
  • x,y,data:输入数据可以多种格式传递,在大多数情况下,使用Numpy或Python对象是可能的,但是更可取的是pandas对象,因为相关的名称将用于对轴进行注释。此外,还可以对分组变量使用分类类型来控制情节元素的顺序。
  • order:用order参数进行筛选分类类别,例如:order=[‘sun’,‘sat’];
  • jitter:抖动项,表示抖动程度,可以使float,或者True;
  • dodge:重叠区域是否分开,当使用hue时,将其设置为True,将沿着分类轴将不同色调级别的条带分开。
  • orient:“v” | “h”,vertical(垂直) 和 horizontal(水平)的意思;

基本的图

tips = sns.load_dataset("tips")
ax = sns.stripplot(x="day", y="total_bill", data=tips)

多增加几个参数的修改:

ax = sns.stripplot(x="day", y="total_bill", hue="smoker",data=tips,
jitter=True,palette="Set2", dodge=True)

1.2 swarmplot(分布密度散点图)

这个函数类似于stripplot(),但是对点进行了调整(只沿着分类轴),这样它们就不会重叠。这更好地表示了值的分布,但它不能很好地扩展到大量的观测。

seaborn.swarmplot(x=None, y=None, hue=None, data=None, order=None,hue_order=None, dodge=False, orient=None, color=None, palette=None, size=5,edgecolor='gray', linewidth=0, ax=None, **kwargs)

可以看出,swarmplot和stripplot参数上基本一致,少了jitter,因为它显示的是分布密度,不需要添加抖动项。

ax = sns.swarmplot(x="day", y="total_bill", data=tips)

多增加几个参数的修改:

ax = sns.swarmplot(x="day", y="total_bill", hue="smoker",data=tips,palette="Set2", dodge=True)

2 Categorical distribution plots(分类分布图)

2.1 boxplot(箱线图)

boxplot(箱线图,又称为盒须图、盒式图)便于在变量之间或跨类别变量级别比较的方式,显示定量数据的分布情况。框显示数据集的四分位数,线显示分布的其余部分,它能显示出一组数据的最大值、最小值、中位数及上下四分位数,使用四分位数范围函数的方法可以确定“离群值”的点。具体用法如下:

seaborn.boxplot(x=None, y=None, hue=None, data=None, order=None,hue_order=None, orient=None, color=None, palette=None, saturation=0.75,width=0.8, dodge=True, fliersize=5, linewidth=None, whis=1.5, notch=False, ax=None, **kwargs)
  • saturation:饱和度,可设置为1;
  • width:float,控制箱型图的宽度大小;
  • fliersize:float,用于指示离群值观察的标记大小;
  • whis:可理解为异常值的上限IQR比例;
ax = sns.boxplot(x="day", y="total_bill", data=tips)

#这些参数不一定要加,简单最好,这里只是为了展示参数的含义

ax = sns.boxplot(x="day", y="total_bill", hue="time",data=tips,linewidth=0.5,saturation=1,width=1,fliersize=3)

2.2 violinplot(小提琴图)

violinplot与boxplot扮演类似的角色,箱线图展示了分位数的位置,它显示了定量数据在一个(或多个)分类变量的多个层次上的分布,这些分布可以进行比较。不像箱形图中所有绘图组件都对应于实际数据点,小提琴绘图以基础分布的核密度估计为特征,通过小提琴图可以知道哪些位置的密度较高。在图中,白点是中位数,黑色盒型的范围是下四分位点到上四分位点,细黑线表示须。外部形状即为核密度估计。

这是一种可以同时显示多个数据分布的有效和有吸引力的方法,但请记住,估计过程受样本大小的影响,相对较小的样本的小提琴手看起来可能会显得非常平滑。具体用法如下:

seaborn.violinplot(x=None, y=None, hue=None, data=None, order=None,hue_order=None, bw='scott', cut=2, scale='area', scale_hue=True, gridsize=100,width=0.8, inner='box', split=False, dodge=True, orient=None, linewidth=None,color=None, palette=None, saturation=0.75, ax=None, **kwargs)
  • bw:‘scott’, ‘silverman’, float,控制拟合程度。在计算内核带宽时,可以引用规则的名称(‘scott’, ‘silverman’)或者使用比例(float)。实际内核大小将通过将比例乘以每个bin内数据的标准差来确定;
  • cut:空值外壳的延伸超过极值点的密度,float;
  • scale:“area”, “count”, “width”,用来缩放每把小提琴的宽度的方法;
  • scale_hue:当使用hue分类后,设置为True时,此参数确定是否在主分组变量进行缩放;
  • gridsize:设置小提琴图的平滑度,越高越平滑;
  • inner:“box”, “quartile”, “point”, “stick”, None,小提琴内部数据点的表示。分别表示:箱子,四分位,点,数据线和不表示;
  • split:是否拆分,当设置为True时,绘制经hue分类的每个级别画出一半的小提琴;
ax = sns.violinplot(x="day", y="total_bill", data=tips)

设置按性别分类,调色为“Set2”,分割,以计数的方式,不表示内部。

ax = sns.violinplot(x="day", y="total_bill", hue="sex",data=tips,palette="Set2", split=True,scale="count", inner=None)

2.3 violinplot+stripplot(小提琴图+分布散点图)

ax = sns.violinplot(x="tip", y="day", data=tips, inner=None,whis=np.inf)
ax = sns.stripplot(x="tip", y="day", data=tips,jitter=True, color="c")

2.4 violinplot+swarmplot(小提琴图+分布密度散点图)

ax = sns.violinplot(x="tip", y="day", data=tips,inner=None, whis=np.inf)
ax = sns.swarmplot(x="tip", y="day", data=tips, color="c")

2.5 boxplot+stripplot(箱线图+分布散点图)

ax = sns.boxplot(x="tip", y="day", data=tips, whis=np.inf)
ax = sns.stripplot(x="tip", y="day", data=tips,jitter=True, color="c")

2.6 boxplot+swarmplot(箱线图+分布密度散点图)

ax = sns.boxplot(x="tip", y="day", data=tips, whis=np.inf)
ax = sns.swarmplot(x="tip", y="day", data=tips, color="c")

3 Categorical estimate plots(分类估计图)

3.1 barplot(条形图)

条形图表示数值变量与每个矩形高度的中心趋势的估计值,用矩形条表示点估计和置信区间,并使用误差线提供关于该估计值附近的不确定性的一些指示。具体用法如下:

seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,estimator=<function mean>, ci=95, n_boot=1000, units=None, orient=None,color=None, palette=None, saturation=0.75, errcolor='.26', errwidth=None,capsize=None, dodge=True, ax=None, **kwargs)
  • estimator:用于估计每个分类箱内的统计函数,默认为mean。当然你也可以设置estimator=np.median/np.std/np.var……
  • order:选择和空值顺序,例如:order=[‘Sat’,‘Sun’];
  • ci:允许的误差的范围(控制误差棒的百分比,在0-100之间),若填写"sd",则用标准误差(默认为95),也可设置ci=None;
  • capsize:设置误差棒帽条(上下两根横线)的宽度,float;
  • saturation:饱和度;
  • errcolor:表示置信区间的线条的颜色;
  • errwidth:float,设置误差条线(和帽)的厚度。

根据性别分组:

ax = sns.barplot(x="day", y="total_bill", hue="sex", data=tips)

设置estimator为中位数(numpy的统计函数都可以,只要你觉得有意义),设置误差棒的宽度,误差棒的颜色为“c”。

ax = sns.barplot(x="day", y="total_bill",hue='sex', data=tips,estimator=np.median,capsize=0.2,errcolor='c')

3.2 countplot(计数图)

一个计数图可以被认为是一个分类直方图,而不是定量的变量。基本的api和选项与barplot()相同,因此您可以比较嵌套变量中的计数。(工作原理就是对输入的数据分类,条形图显示各个分类的数量)。具体参数如下:

seaborn.countplot(x=None, y=None, hue=None, data=None, order=None,hue_order=None, orient=None, color=None, palette=None, saturation=0.75,dodge=True, ax=None, **kwargs)

这里参数并没有太多改变,orient就是改变方向。但是,值得注意的是缺少了一些参数,而且countplot中不能同时输入x和y,却可以使用hue(这我就很纳闷了???还望大佬解释解释)。

titanic = sns.load_dataset("titanic")
ax = sns.countplot(x="class", hue="who", data=titanic)

3.3 piontplot(点图)

用散点图符号表示点估计和置信区间,点图代表散点图位置的数值变量的中心趋势估计,并使用误差线提供关于该估计的不确定性的一些指示。点图可能比条形图(barplot)更有用于聚焦一个或多个分类变量的不同级别之间的比较。他们尤其善于表现交互作用:一个分类变量的层次之间的关系如何在第二个分类变量的层次之间变化。连接来自相同色调等级的每个点的线允许交互作用通过斜率的差异进行判断,这比对几组点或条的高度比较容易。具体用法如下:

seaborn.pointplot(x=None, y=None, hue=None, data=None, order=None,hue_order=None, estimator=<function mean>, ci=95, n_boot=1000,units=None, markers='o', linestyles='-', dodge=False, join=True,scale=1, orient=None, color=None, palette=None, errwidth=None,capsize=None, ax=None, **kwargs)
  • join:默认两个均值点会相连接,若不想显示,可以通过join=False参数实现;
  • scale:float,均值点(默认)和连线的大小和粗细。
tips = sns.load_dataset("tips")
ax = sns.pointplot(x="time", y="total_bill", data=tips)

尝试更多参数,按性别分组,用中位数进行比较,分开显示,使用调色板,修改标记类型和线条类型(很多参数都不是必要的,这里只是尽量充分介绍其用法)。

ax = sns.pointplot(x="time", y="total_bill", hue="smoker",data=tips,estimator=np.median,dodge=True, palette="Set2",markers=["o", "x"],linestyles=["-", "--"])

3.4 catplot()

该函数提供了对几个轴级函数的访问,这些函数使用几种可视化表示形式之一显示一个数字变量和一个或多个分类变量之间的关系。其实说白了就是利用kind参数来画前面Categorical plots(分类图)中的任意8个图形。具体如下:

seaborn.catplot(x=None, y=None, hue=None, data=None, row=None, col=None,col_wrap=None, estimator=<function mean>, ci=95, n_boot=1000, units=None,order=None, hue_order=None, row_order=None, col_order=None, kind='strip',height=5, aspect=1, orient=None, color=None, palette=None, legend=True,legend_out=True, sharex=True, sharey=True, margin_titles=False,facet_kws=None, **kwargs)

有没有发现,它和regplot(关系图)的使用方法差不多?

  • kind:默认strip(分布散点图),也可以选择“point”, “bar”, “count”,
  • col、row:将决定网格的面数的分类变量,可具体制定;
  • col_wrap:指定每行展示的子图个数,但是与row不兼容;
  • row_order, col_order : 字符串列表,安排行和列,以及推断数据中的对象;
  • height,aspect:与图像的大小有关;
  • sharex,sharey:bool, ‘col’or ‘row’,是否共享想,x,y坐标;

注:单个图形里面的参数也是可以传入里面的

绘制一个小提琴图,按数据中的kind类别分组(数据中的),不要中心框线。

exercise = sns.load_dataset("exercise")
g = sns.catplot(x="time", y="pulse", hue="kind",data=exercise, kind="violin",inner=None)

使用diet来分成几个图形,并用height、aspect来设置图片比例:

g = sns.catplot(x="time", y="pulse", hue="kind",kind='bar',col="diet",data=exercise,height=4, aspect=0.8)

相关推荐

Python四种常用的高阶函数,你会用了吗

每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试1、什么是高阶函数把函数作为参数传入,这样的函数称为高阶函数例如:...

Python之函数进阶-函数加强(上)(python函数的作用增强代码的可读性)

一.递归函数递归是一种编程技术,其中函数调用自身以解决问题。递归函数需要有一个或多个终止条件,以防止无限递归。递归可以用于解决许多问题,例如排序、搜索、解析语法等。递归的优点是代码简洁、易于理解,并...

数据分析-一元线性回归分析Python

前面几篇介绍了数据的相关性分析,通过相关性分析可以看出变量之间的相关性程度。如果我们已经发现变量之间存在明显的相关性了,接下来就可以通过回归分析,计算出具体的相关值,然后可以用于对其他数据的预测。本篇...

python基础函数(python函数总结)

Python函数是代码复用的核心工具,掌握基础函数的使用是编程的关键。以下是Python函数的系统总结,包含内置函数和自定义函数的详细用法,以及实际应用场景。一、Python内置函数(...

python进阶100集(9)int数据类型深入分析

一、基本概念int数据类型基本上来说这里指的都是整形,下一届我们会讲解整形和浮点型的转化,以及精度问题!a=100b=a这里a是变量名,100就是int数据对象,b指向的是a指向的对象,...

Python学不会来打我(73)python常用的高阶函数汇总

python最常用的高阶函数有counter(),sorted(),map(),reduce(),filter()。很多高阶函数都是将一个基础函数作为第一个参数,将另外一个容器集合作为第二个参数,然...

python中有哪些内置函数可用于编写数值表达式?

在Python中,用于编写数值表达式的内置函数很多,它们可以帮助你处理数学运算、类型转换、数值判断等。以下是常用的内置函数(不需要导入模块)按类别归类说明:一、基础数值处理函数函数作用示例ab...

如何在Python中获取数字的绝对值?

Python有两种获取数字绝对值的方法:内置abs()函数返回绝对值。math.fabs()函数还返回浮点绝对值。abs()函数获取绝对值内置abs()函数返回绝对值,要使用该函数,只需直接调用:a...

【Python大语言模型系列】使用dify云版本开发一个智能客服机器人

这是我的第359篇原创文章。一、引言上篇文章我们介绍了如何使用dify云版本开发一个简单的工作流:【Python大语言模型系列】一文教你使用dify云版本开发一个AI工作流(完整教程)这篇文章我们将引...

Python3.11版本使用thriftpy2的问题

Python3.11于2022年10月24日发布,但目前thriftpy2在Python3.11版本下无法安装,如果有使用thriftpy2的童鞋,建议晚点再升级到最新版本。...

uwsgi的python2+3多版本共存(python多版本兼容)

一、第一种方式(virtualenv)1、首先,机器需要有python2和python3的可执行环境。确保pip和pip3命令可用。原理就是在哪个环境下安装uwsgi。uwsgi启动的时候,就用的哪个...

解释一下Python脚本中版本号声明的作用

在Python脚本中声明版本号(如__version__变量)是一种常见的元数据管理实践,在IronPython的兼容性验证机制中具有重要作用。以下是版本号声明的核心作用及实现原理:一、版本号...

除了版本号声明,还有哪些元数据可以用于Python脚本的兼容性管理

在Python脚本的兼容性管理中,除了版本号声明外,还有多种元数据可以用于增强脚本与宿主环境的交互和验证。以下是一些关键的元数据类型及其应用场景:一、环境依赖声明1.Python版本要求pyth...

今年回家没票了?不,我有高科技抢票

零基础使用抢票开源软件Py12306一年一度的抢票季就要到了,今天给大家科普一下一款软件的使用方法。软件目前是开源的,禁止用于商用。首先需要在电脑上安装python3.7,首先从官网下载对应的安装包,...

生猛!春运抢票神器成GitHub热榜第一,过年回家全靠它了

作者:车栗子发自:凹非寺量子位报道春节抢票正在如火如荼的进行,过年回家那肯定需要抢票,每年的抢票大战,都是一场硬战,没有一个好工具,怎么能上战场死锁呢。今天小编推荐一个Python抢票工具,送到...

取消回复欢迎 发表评论: