百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python数学建模系列(五):微分方程

off999 2024-11-24 20:11 25 浏览 0 评论

菜鸟学习记:第四十四天

收拾行李 准备出发!

备注

若下文中数学公式显示不正常,可以查看Python数学建模系列(五):微分方程

1、微分方程分类

微分方程是用来描述某一类函数与其导数之间关系的方程,其解是一个符合方程的函数。

微分方程按自变量个数可分为常微分方程和偏微分方程

常微分方程(ODE:ordinary differential equation)

偏微分方程(两个以上的自变量)


2、微分方程解析解

具备解析解的ODE(常微分方程),我们可以利用SymPy库进行求解

以求解阻尼谐振子的二阶ODE为例,其表达式为:


Demo代码

import sympy
 
 
def apply_ics(sol, ics, x, known_params):
    free_params = sol.free_symbols - set(known_params)
    eqs = [(sol.lhs.diff(x, n) - sol.rhs.diff(x, n)).subs(x, 0).subs(ics) for n in range(len(ics))]
    sol_params = sympy.solve(eqs, free_params)
    return sol.subs(sol_params)
 
 
# 初始化打印环境
sympy.init_printing()
# 标记参数,且均为正
t, omega0, gamma = sympy.symbols("t, omega_0, gamma", positive=True)
# 标记x是微分函数,非变量
x = sympy.Function("x")
# 用diff()和dsolve得到通解 
# ode 微分方程等号左边的部分,等号右边为0
ode = x(t).diff(t, 2) + 2 * gamma * omega0 * x(t).diff(t) + omega0 ** 2 * x(t)
ode_sol = sympy.dsolve(ode)
# 初始条件:字典匹配
ics = {x(0): 1, x(t).diff(t).subs(t, 0): 0}
x_t_sol = apply_ics(ode_sol, ics, t, [omega0, gamma])
sympy.pprint(x_t_sol)

运行结果:

image.png

image.png

3、微分方程数值解

当ODE无法求得解析解时,可以用scipy中的integrate.odeint求 数值解来探索其解的部分性质,并辅以可视化,能直观地展现 ODE解的函数表达。

以如下一阶非线性(因为函数y幂次为2)ODE为例:

image.png

现用odeint求其数值解

3.1 场线图与数值解

Demo代码

import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
import sympy

def plot_direction_field(x, y_x, f_xy, x_lim=(-5, 5), y_lim=(-5, 5), ax=None):
    f_np = sympy.lambdify((x, y_x), f_xy, 'numpy')
    x_vec = np.linspace(x_lim[0], x_lim[1], 20)
    y_vec = np.linspace(y_lim[0], y_lim[1], 20)

    if ax is None:
        _, ax = plt.subplots(figsize=(4, 4))

    dx = x_vec[1] - x_vec[0]
    dy = y_vec[1] - y_vec[0]

    for m, xx in enumerate(x_vec):
        for n, yy in enumerate(y_vec):
            Dy = f_np(xx, yy) * dx
            Dx = 0.8 * dx**2 / np.sqrt(dx**2 + Dy**2)
            Dy = 0.8 * Dy*dy / np.sqrt(dx**2 + Dy**2)
            ax.plot([xx - Dx/2, xx + Dx/2], [yy - Dy/2, yy + Dy/2], 'b', lw=0.5)

    ax.axis('tight')
    ax.set_title(r"$%s#34; %(sympy.latex(sympy.Eq(y_x.diff(x), f_xy))), fontsize=18)

    return ax

x = sympy.symbols('x')
y = sympy.Function('y')
f = x-y(x)**2

f_np = sympy.lambdify((y(x), x), f)
## put variables (y(x), x) into lambda function f.
y0 = 1
xp = np.linspace(0, 5, 100)
yp = integrate.odeint(f_np, y0, xp)
## solve f_np with initial conditons y0, and x ranges as xp.
xn = np.linspace(0, -5, 100)
yn = integrate.odeint(f_np, y0, xn)

fig, ax = plt.subplots(1, 1, figsize=(4, 4))
plot_direction_field(x, y(x), f, ax=ax)
## plot direction field of function f
ax.plot(xn, yn, 'b', lw=2)
ax.plot(xp, yp, 'r', lw=2)
plt.show()

运行结果:

image.png

3.2 洛伦兹曲线与数值解

以求解洛伦兹曲线为例,以下方程组代表曲线在xyz三个方向 上的速度,给定一个初始点,可以画出相应的洛伦兹曲线:

在这里插入图片描述

Demo代码

import numpy as np
from scipy.integrate import odeint
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
 
 
def dmove(Point, t, sets):
    p, r, b = sets
    x, y, z = Point
    return np.array([p * (y - x), x * (r - z), x * y - b * z])
 
 
t = np.arange(0, 30, 0.001)
P1 = odeint(dmove, (0., 1., 0.), t, args=([10., 28., 3.],))
P2 = odeint(dmove, (0., 1.01, 0.), t, args=([10., 28., 3.],))
fig = plt.figure()
ax = Axes3D(fig)
ax.plot(P1[:, 0], P1[:, 1], P1[:, 2])
ax.plot(P2[:, 0], P2[:, 1], P2[:, 2])
plt.show()

运行结果:

image.png

4、传染病模型

在这里插入图片描述

模型一:SI-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,I_0)


def funcSI(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSI,INI,T_range)


plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SI Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

image.png

模型二:SIS model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,I_0)


def funcSIS(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSIS,INI,T_range)

plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SIS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

image.png

模型三:SIR model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,I_0,R_0)


def funcSIR(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1]
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSIR,INI,T_range)


plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
image.png

模型四:SIRS-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 7
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,I_0,R_0)


def funcSIRS(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1] - X[2] / Ts
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSIRS,INI,T_range)


plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

image.png

模型五:SEIR-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)


def funcSEIR(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2]
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSEIR,INI,T_range)


plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.')

plt.title('SEIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

image.png

模型六:SEIRS-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt

# N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 7
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150

# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)


def funcSEIRS(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2] - X[3] / Ts
return Y

T_range = np.arange(0,T + 1)

RES = spi.odeint(funcSEIRS,INI,T_range)


plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.')

plt.title('SEIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

image.png

结语

参考:

  • https://www.bilibili.com/video/BV12h411d7Dm
  • https://zhuanlan.zhihu.com/p/104091330

学习来源:

  • B站及其课堂PPT
  • 对其中代码进行了复现

「文章仅作为学习笔记,记录从0到1的一个过程」

希望对您有所帮助,如有错误欢迎小伙伴指正~

相关推荐

开机microsoft登录不上

1、系统问题:如果系统版本比较低,可能会由于旧系统存在某些BUG未修复或业务功能未优化,使手机在使用APP等应用过程中出现卡的情况,建议更新到最新的ios系统使用。2、内存问题:如果内存比较小,在运行...

如何取消win10开机密码(如何取消win10开机密码账户登录)

取消Windows10的开机密码可以通过以下方法进行操作:方法一:使用用户账户设置1.打开“开始”菜单,点击“设置”图标。2.在设置窗口中,点击“帐户”选项。3.在左侧菜单中,选择“登录选项”。4....

免费解压文件的软件(免费解压文件的软件电脑)

1、快压快压(kuaizip)是一款非常流氓的压缩和解压缩软件,一款免费、方便、快速的压缩和解压缩利器,拥有一流的压缩技术,是国内第一款具备自主压缩格式的软件。快压自身的压缩格式KZ具有超大的压缩比和...

无线usb网卡插上去没有反应(为什么usb无线网卡插上去没反应)

当出现电脑无法识别无线网卡的情况时,是简单的方法就是将无线USB网卡插到电脑后置USB接口上,以保证供电的充足。当然如果是偶然出现无法识别的情况,建议重启一下电脑试试。启用USB无线网卡驱动:右击“计...

怎么登录自己家的路由器(怎么登录自己家的路由器账号)

登陆家里的路由器方法:1、先查看ip,方法:win+r---输入:cmd---在再黑白界面输入:ipconfig,按回车。2、根据网关查看路由器地址。若网关是:192.168.2.1,那么路由器的ip...

linux操作系统安装步骤(linux系统详细安装步骤)

1.选择“中文(简体)”,然后点击“安装Ubuntu”。2.点击“继续”。3.然后点击“现在安装”。4.选择地址的时区,然后点击“继续”。5.选择“汉语”,然后点击“继续”。6.输入用户的名字。7.设...

苹果手机怎么设置定时关机(苹果手机怎么设置定时关机重启)

苹果手机可以设置定时关机,但无法设置定时开机。具体操作步骤如下:进入苹果手机自带的时钟。点击屏幕有下角的计时器。点击画面中间的计时结束启用选项。选择画面最下方的“停止播放”。之后再点击画面右上角的设定...

无线网wifi密码忘记了怎么办

忘记wifi密码后,可以在路由器后台查看。1.在浏览器的地址栏中,输入路由器上的管理地址,进入后台界面;2.在后台界面里,找到“无线设置”选项,点击它;3.在新界面里,点击wifi密码右侧的小眼睛图标...

win7系统无法正常开机怎么办
win7系统无法正常开机怎么办

解决方法如下1,出现无法启动的原因,要注意是开机启动不了,还是在进度条那里缓冲,过不去.如果是开机启动不了,那就要看一下内存条、电源等有没有问题?如果是在进度条那里,那就看下方的三种方法。2,第一种方法:1,开机按F8键.2,选择最近一次的...

2025-11-16 07:51 off999

现在装win7还需要激活吗(现在安装win7旗舰版还需密钥吗)

要激活  Windows7如果是预装在计算机中的,买来之后便不用激活,这里预装指的是在厂商那里。正版的Windows7安装到计算机中,有三十天的试用期,若要永久使用,就要使...

2025显卡性能排行榜天梯图(2020年显卡性能天梯图)

MacBookPro的显卡水平处于笔记本独立显卡Nvidia920M和940M之间。属于低端显卡级,玩玩LOL啥的还可以,其他的大型游戏就算了,MAC不适合打游戏。MacBookPro搭载的8代...

网络对时服务器(对时服务器端口)

对等网是指在网络中所有计算机的地位都是平等的,既是服务器也是客户机,所有计算机中安装的都是相同的单机操作系统如Windows98/XP/Vista/7等,它可以设置共享资源,但受连接数限制,一般是只允...

如何强制删除u盘文件(强制删除u盘内容)

1、电脑上下载安装安全杀毒类软件。2、使用强力卸载。3、找到U盘上需要卸载的文件,右击强力卸载可以卸载顽固型文件。4、被暂用的文件也删除不了可以退出U盘重启电脑重新开机插入U盘进行删除。5、不能删除的...

directx官方下载win7(directx download)

点开始-----运行,输入dxdiag,回车后打开“DirectX诊断工具”窗口,进入“显示”选项卡,看一下是否启用了加速,没有的话,单击下面的“DirectX功能”项中的“启用”按钮,这样便打开了D...

u盘视频无法播放怎么办(u盘上视频没办法播放)

解决办法:1.检查U盘存储格式是否为FAT32,如果不是,请将其格式化为FAT32; 2.检查U盘中视频文件是否损坏,如果有损坏文件,请尝试重新复制一份; 3.检查U盘中存储...

取消回复欢迎 发表评论: