Python数学建模系列(四):数值逼近
off999 2024-11-24 20:12 25 浏览 0 评论
若文中数学公式显示有问题 可查看文章原文
菜鸟学习记:第四十二天
1. 一维插值
插值:求过已知有限个数据点的近似函数。
插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本并穿过。常见差值方法有拉格朗日插值法、分段插值法、样条插值法。
image.png
?
interp1d(x, y) 计算一维插值
1.1 线性插值与样条插值(B-spline)
例1:某电学元件的电压数据记录在0~2.25πA范围与电流关系满足正弦函数,分别用线性插值和样条插值方法给出经过数据点的数值逼近函数曲线。
Demo代码
import matplotlib
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
# 引入中文字体
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 初始数据量 0 - 2.25pi 分为10份 均匀分
x = np.linspace(0, 2.25 * np.pi, 10)
y = np.sin(x)
# 得到差值函数 (使用线性插值)
f_linear = interpolate.interp1d(x, y)
# 新数据 0 - 2.25pi 分为100份 均匀分 (线性插值)
x_new = np.linspace(0, 2.25 * np.pi, 100)
y_new = f_linear(x_new)
# 使用B-spline插值
tck = interpolate.splrep(x, y)
y_bspline = interpolate.splev(x_new, tck)
# 可视化
plt.xlabel(u'安培/A')
plt.ylabel(u'伏特/V')
plt.plot(x, y, "o", label=u"原始数据")
plt.plot(x_new, f_linear(x_new), label=u"线性插值")
plt.plot(x_new, y_bspline, label=u"B-spline插值")
plt.legend()
plt.show()
输出:
image.png
涉及知识点:
- numpy.linspace
- scipy.interpolate.interp1d
- scipy.interpolate.splrep
1.2 高阶样条插值
随着插值节点增多,多项式次数也变高,插值曲线在一些区域出现跳跃,并且越来越偏离原始曲线,称为龙格现象。
例2:某电学元件的电压数据记录在0~10A范围与电流关系满足正弦函数,分别用0~5阶样条插值方法给出经过数据点的数值逼近函数曲线。
Demo代码
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 绘制数据点集
plt.figure(figsize=(12, 9))
plt.plot(x, y, 'ro')
# 根据kind创建interp1d对象f、计算插值结果
xnew = np.linspace(0, 10, 101)
# 邻接 0阶 线性 二阶
for kind in ['nearest', 'zero', 'linear', 'quadratic']:
f = interpolate.interp1d(x, y, kind=kind)
ynew = f(xnew)
plt.plot(xnew, ynew, label=str(kind))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(loc="lower right")
plt.show()
输出:
分别对每一种插值方式进行查看
1.当kind = nearest时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='nearest')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
2.当kind = zero时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='zero')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
3.当kind = linear时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='linear')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
4.当kind = quadratic时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='quadratic')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
5.当kind = cubic时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='cubic')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
2. 二维插值
interp2d(x, y, z, kind=“'') 计算二维插值
2.1 图像模糊处理——样条插值
例3:某图像表达式为,完成图像的二维插值使其变清晰。
Demo代码
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
def func(x, y):
return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2))
# X-Y轴分为15*15的网格
# x, y = np.mgrid[-1:1:15j, -1:1:15j]
x = np.linspace(-1, 1, 15)
y = np.linspace(-1, 1, 15)
x, y = np.meshgrid(x, y)
fvals = func(x, y)
# 二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')
# 计算100*100网格上插值
xnew = np.linspace(-1, 1, 100)
ynew = np.linspace(-1, 1, 100)
fnew = newfunc(xnew, ynew)
xnew, ynew = np.meshgrid(xnew, ynew)
plt.subplot(121)
# extent x轴和y轴范围
im1 = plt.imshow(fvals, extent=[-1, 1, -1, 1], interpolation="nearest", origin="lower",cmap="Reds")
plt.colorbar(im1)
plt.subplot(122)
im2 = plt.imshow(fnew, extent=[-1, 1, -1, 1], interpolation="nearest", origin="lower",cmap="Reds")
plt.colorbar(im2)
plt.show()
输出:
2.2 二维插值的三维图
例4:某图像表达式为,完成三维图像的二维插值可视化。
?
其实就是在二维插值基础上 实现了三维图像的绘制
Demo代码
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
from scipy import interpolate
import matplotlib.cm as cm
import matplotlib.pyplot as plt
def func(x, y):
return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2))
# X-Y轴分为20*20的网格
x = np.linspace(-1, 1, 20)
y = np.linspace(-1, 1, 20)
x, y = np.meshgrid(x, y)
fvals = func(x, y)
# 绘制分图1
fig = plt.figure(figsize=(9, 6))
ax = plt.subplot(1, 2, 1, projection='3d')
surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0.5, antialiased=True)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x,y)')
plt.colorbar(surf, shrink=0.5, aspect=5) # 添加颜色条标注
# 二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')
# 计算100*100网格上插值
xnew = np.linspace(-1, 1, 100)
ynew = np.linspace(-1, 1, 100)
fnew = newfunc(xnew, ynew)
xnew, ynew = np.meshgrid(xnew, ynew)
ax2 = plt.subplot(1, 2, 2, projection='3d')
surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0.5, antialiased=True)
ax2.set_xlabel('xnew')
ax2.set_ylabel('ynew')
ax2.set_zlabel('fnew(x,y)')
plt.colorbar(surf2, shrink=0.5, aspect=5)
# 标注
plt.show()
输出:
3. 最小二乘拟合
拟合指的是已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函 数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。
如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。
从几何意义上讲,拟合是给定了空间中的一些点,找到一个已知形式、未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。
选择参数c使得拟合模型与实际观测值在曲线拟合各点的残差(或离差)ek=yk-f(xk,c)的加权平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线,这种方法叫做最小二乘法。
涉及知识点
from scipy.optimize import leastsq
例5:对下列电学元件的电压电流记录结果进行最小二乘拟合,绘制相应曲线。 电流(A)8.19 2.72 6.39 8.71 4.7 2.66 3.78 电压(V)7.01 2.78 6.47 6.71 4.1 4.23 4.05
在这里插入图片描述
Demo代码
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq
# 引入中文字体
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 设置图字号
plt.figure(figsize=(9, 9))
# 初始数据值
X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78])
Y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4.23, 4.05])
# 计算以p为参数的直线与原始数据之间误差
def f(p):
k, b = p
return (Y - (k * X + b))
# leastsq使得f的输出数组的平方和最小,参数初始值k、b设为[1,0]
r = leastsq(f, [1, 0])
# 得到计算出的最优k、b
k, b = r[0]
# 可视化
plt.scatter(X, Y, s=100, alpha=1.0, marker='o', label=u'数据点')
x = np.linspace(0, 10, 1000)
y = k * x + b
ax = plt.gca()
plt.plot(x, y, color='r', linewidth=5, linestyle=":", markersize=20, label=u'拟合曲线')
plt.legend(loc=0, numpoints=1)
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize='xx-large')
plt.xlabel(u'安培/A')
plt.ylabel(u'伏特/V')
plt.xlim(0, x.max() * 1.1)
plt.ylim(0, y.max() * 1.1)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(loc='upper left')
plt.show()
输出:
结语
学习来源:B站及其课堂PPT,对其中代码进行了复现
文章仅作为学习笔记,记录从0到1的一个过程
希望对您有所帮助,如有错误欢迎小伙伴指正~
相关推荐
- 开机microsoft登录不上
-
1、系统问题:如果系统版本比较低,可能会由于旧系统存在某些BUG未修复或业务功能未优化,使手机在使用APP等应用过程中出现卡的情况,建议更新到最新的ios系统使用。2、内存问题:如果内存比较小,在运行...
- 如何取消win10开机密码(如何取消win10开机密码账户登录)
-
取消Windows10的开机密码可以通过以下方法进行操作:方法一:使用用户账户设置1.打开“开始”菜单,点击“设置”图标。2.在设置窗口中,点击“帐户”选项。3.在左侧菜单中,选择“登录选项”。4....
- 免费解压文件的软件(免费解压文件的软件电脑)
-
1、快压快压(kuaizip)是一款非常流氓的压缩和解压缩软件,一款免费、方便、快速的压缩和解压缩利器,拥有一流的压缩技术,是国内第一款具备自主压缩格式的软件。快压自身的压缩格式KZ具有超大的压缩比和...
- 无线usb网卡插上去没有反应(为什么usb无线网卡插上去没反应)
-
当出现电脑无法识别无线网卡的情况时,是简单的方法就是将无线USB网卡插到电脑后置USB接口上,以保证供电的充足。当然如果是偶然出现无法识别的情况,建议重启一下电脑试试。启用USB无线网卡驱动:右击“计...
- 怎么登录自己家的路由器(怎么登录自己家的路由器账号)
-
登陆家里的路由器方法:1、先查看ip,方法:win+r---输入:cmd---在再黑白界面输入:ipconfig,按回车。2、根据网关查看路由器地址。若网关是:192.168.2.1,那么路由器的ip...
- linux操作系统安装步骤(linux系统详细安装步骤)
-
1.选择“中文(简体)”,然后点击“安装Ubuntu”。2.点击“继续”。3.然后点击“现在安装”。4.选择地址的时区,然后点击“继续”。5.选择“汉语”,然后点击“继续”。6.输入用户的名字。7.设...
- 苹果手机怎么设置定时关机(苹果手机怎么设置定时关机重启)
-
苹果手机可以设置定时关机,但无法设置定时开机。具体操作步骤如下:进入苹果手机自带的时钟。点击屏幕有下角的计时器。点击画面中间的计时结束启用选项。选择画面最下方的“停止播放”。之后再点击画面右上角的设定...
- 无线网wifi密码忘记了怎么办
-
忘记wifi密码后,可以在路由器后台查看。1.在浏览器的地址栏中,输入路由器上的管理地址,进入后台界面;2.在后台界面里,找到“无线设置”选项,点击它;3.在新界面里,点击wifi密码右侧的小眼睛图标...
-
- win7系统无法正常开机怎么办
-
解决方法如下1,出现无法启动的原因,要注意是开机启动不了,还是在进度条那里缓冲,过不去.如果是开机启动不了,那就要看一下内存条、电源等有没有问题?如果是在进度条那里,那就看下方的三种方法。2,第一种方法:1,开机按F8键.2,选择最近一次的...
-
2025-11-16 07:51 off999
- 现在装win7还需要激活吗(现在安装win7旗舰版还需密钥吗)
-
要激活 Windows7如果是预装在计算机中的,买来之后便不用激活,这里预装指的是在厂商那里。正版的Windows7安装到计算机中,有三十天的试用期,若要永久使用,就要使...
- 2025显卡性能排行榜天梯图(2020年显卡性能天梯图)
-
MacBookPro的显卡水平处于笔记本独立显卡Nvidia920M和940M之间。属于低端显卡级,玩玩LOL啥的还可以,其他的大型游戏就算了,MAC不适合打游戏。MacBookPro搭载的8代...
- 网络对时服务器(对时服务器端口)
-
对等网是指在网络中所有计算机的地位都是平等的,既是服务器也是客户机,所有计算机中安装的都是相同的单机操作系统如Windows98/XP/Vista/7等,它可以设置共享资源,但受连接数限制,一般是只允...
- 如何强制删除u盘文件(强制删除u盘内容)
-
1、电脑上下载安装安全杀毒类软件。2、使用强力卸载。3、找到U盘上需要卸载的文件,右击强力卸载可以卸载顽固型文件。4、被暂用的文件也删除不了可以退出U盘重启电脑重新开机插入U盘进行删除。5、不能删除的...
- directx官方下载win7(directx download)
-
点开始-----运行,输入dxdiag,回车后打开“DirectX诊断工具”窗口,进入“显示”选项卡,看一下是否启用了加速,没有的话,单击下面的“DirectX功能”项中的“启用”按钮,这样便打开了D...
- u盘视频无法播放怎么办(u盘上视频没办法播放)
-
解决办法:1.检查U盘存储格式是否为FAT32,如果不是,请将其格式化为FAT32; 2.检查U盘中视频文件是否损坏,如果有损坏文件,请尝试重新复制一份; 3.检查U盘中存储...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
慕ke 前端工程师2024「完整」
-
失业程序员复习python笔记——条件与循环
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
