Python数学建模系列(四):数值逼近
off999 2024-11-24 20:12 16 浏览 0 评论
若文中数学公式显示有问题 可查看文章原文
菜鸟学习记:第四十二天
1. 一维插值
插值:求过已知有限个数据点的近似函数。
插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本并穿过。常见差值方法有拉格朗日插值法、分段插值法、样条插值法。
image.png
?
interp1d(x, y) 计算一维插值
1.1 线性插值与样条插值(B-spline)
例1:某电学元件的电压数据记录在0~2.25πA范围与电流关系满足正弦函数,分别用线性插值和样条插值方法给出经过数据点的数值逼近函数曲线。
Demo代码
import matplotlib
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
# 引入中文字体
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 初始数据量 0 - 2.25pi 分为10份 均匀分
x = np.linspace(0, 2.25 * np.pi, 10)
y = np.sin(x)
# 得到差值函数 (使用线性插值)
f_linear = interpolate.interp1d(x, y)
# 新数据 0 - 2.25pi 分为100份 均匀分 (线性插值)
x_new = np.linspace(0, 2.25 * np.pi, 100)
y_new = f_linear(x_new)
# 使用B-spline插值
tck = interpolate.splrep(x, y)
y_bspline = interpolate.splev(x_new, tck)
# 可视化
plt.xlabel(u'安培/A')
plt.ylabel(u'伏特/V')
plt.plot(x, y, "o", label=u"原始数据")
plt.plot(x_new, f_linear(x_new), label=u"线性插值")
plt.plot(x_new, y_bspline, label=u"B-spline插值")
plt.legend()
plt.show()
输出:
image.png
涉及知识点:
- numpy.linspace
- scipy.interpolate.interp1d
- scipy.interpolate.splrep
1.2 高阶样条插值
随着插值节点增多,多项式次数也变高,插值曲线在一些区域出现跳跃,并且越来越偏离原始曲线,称为龙格现象。
例2:某电学元件的电压数据记录在0~10A范围与电流关系满足正弦函数,分别用0~5阶样条插值方法给出经过数据点的数值逼近函数曲线。
Demo代码
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 绘制数据点集
plt.figure(figsize=(12, 9))
plt.plot(x, y, 'ro')
# 根据kind创建interp1d对象f、计算插值结果
xnew = np.linspace(0, 10, 101)
# 邻接 0阶 线性 二阶
for kind in ['nearest', 'zero', 'linear', 'quadratic']:
f = interpolate.interp1d(x, y, kind=kind)
ynew = f(xnew)
plt.plot(xnew, ynew, label=str(kind))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(loc="lower right")
plt.show()
输出:
分别对每一种插值方式进行查看
1.当kind = nearest时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='nearest')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
2.当kind = zero时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='zero')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
3.当kind = linear时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='linear')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
4.当kind = quadratic时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='quadratic')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
5.当kind = cubic时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='cubic')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
2. 二维插值
interp2d(x, y, z, kind=“'') 计算二维插值
2.1 图像模糊处理——样条插值
例3:某图像表达式为,完成图像的二维插值使其变清晰。
Demo代码
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
def func(x, y):
return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2))
# X-Y轴分为15*15的网格
# x, y = np.mgrid[-1:1:15j, -1:1:15j]
x = np.linspace(-1, 1, 15)
y = np.linspace(-1, 1, 15)
x, y = np.meshgrid(x, y)
fvals = func(x, y)
# 二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')
# 计算100*100网格上插值
xnew = np.linspace(-1, 1, 100)
ynew = np.linspace(-1, 1, 100)
fnew = newfunc(xnew, ynew)
xnew, ynew = np.meshgrid(xnew, ynew)
plt.subplot(121)
# extent x轴和y轴范围
im1 = plt.imshow(fvals, extent=[-1, 1, -1, 1], interpolation="nearest", origin="lower",cmap="Reds")
plt.colorbar(im1)
plt.subplot(122)
im2 = plt.imshow(fnew, extent=[-1, 1, -1, 1], interpolation="nearest", origin="lower",cmap="Reds")
plt.colorbar(im2)
plt.show()
输出:
2.2 二维插值的三维图
例4:某图像表达式为,完成三维图像的二维插值可视化。
?
其实就是在二维插值基础上 实现了三维图像的绘制
Demo代码
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
from scipy import interpolate
import matplotlib.cm as cm
import matplotlib.pyplot as plt
def func(x, y):
return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2))
# X-Y轴分为20*20的网格
x = np.linspace(-1, 1, 20)
y = np.linspace(-1, 1, 20)
x, y = np.meshgrid(x, y)
fvals = func(x, y)
# 绘制分图1
fig = plt.figure(figsize=(9, 6))
ax = plt.subplot(1, 2, 1, projection='3d')
surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0.5, antialiased=True)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x,y)')
plt.colorbar(surf, shrink=0.5, aspect=5) # 添加颜色条标注
# 二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')
# 计算100*100网格上插值
xnew = np.linspace(-1, 1, 100)
ynew = np.linspace(-1, 1, 100)
fnew = newfunc(xnew, ynew)
xnew, ynew = np.meshgrid(xnew, ynew)
ax2 = plt.subplot(1, 2, 2, projection='3d')
surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0.5, antialiased=True)
ax2.set_xlabel('xnew')
ax2.set_ylabel('ynew')
ax2.set_zlabel('fnew(x,y)')
plt.colorbar(surf2, shrink=0.5, aspect=5)
# 标注
plt.show()
输出:
3. 最小二乘拟合
拟合指的是已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函 数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。
如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。
从几何意义上讲,拟合是给定了空间中的一些点,找到一个已知形式、未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。
选择参数c使得拟合模型与实际观测值在曲线拟合各点的残差(或离差)ek=yk-f(xk,c)的加权平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线,这种方法叫做最小二乘法。
涉及知识点
from scipy.optimize import leastsq
例5:对下列电学元件的电压电流记录结果进行最小二乘拟合,绘制相应曲线。 电流(A)8.19 2.72 6.39 8.71 4.7 2.66 3.78 电压(V)7.01 2.78 6.47 6.71 4.1 4.23 4.05
在这里插入图片描述
Demo代码
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq
# 引入中文字体
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 设置图字号
plt.figure(figsize=(9, 9))
# 初始数据值
X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78])
Y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4.23, 4.05])
# 计算以p为参数的直线与原始数据之间误差
def f(p):
k, b = p
return (Y - (k * X + b))
# leastsq使得f的输出数组的平方和最小,参数初始值k、b设为[1,0]
r = leastsq(f, [1, 0])
# 得到计算出的最优k、b
k, b = r[0]
# 可视化
plt.scatter(X, Y, s=100, alpha=1.0, marker='o', label=u'数据点')
x = np.linspace(0, 10, 1000)
y = k * x + b
ax = plt.gca()
plt.plot(x, y, color='r', linewidth=5, linestyle=":", markersize=20, label=u'拟合曲线')
plt.legend(loc=0, numpoints=1)
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize='xx-large')
plt.xlabel(u'安培/A')
plt.ylabel(u'伏特/V')
plt.xlim(0, x.max() * 1.1)
plt.ylim(0, y.max() * 1.1)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(loc='upper left')
plt.show()
输出:
结语
学习来源:B站及其课堂PPT,对其中代码进行了复现
文章仅作为学习笔记,记录从0到1的一个过程
希望对您有所帮助,如有错误欢迎小伙伴指正~
相关推荐
- Python四种常用的高阶函数,你会用了吗
-
每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试1、什么是高阶函数把函数作为参数传入,这样的函数称为高阶函数例如:...
- Python之函数进阶-函数加强(上)(python函数的作用增强代码的可读性)
-
一.递归函数递归是一种编程技术,其中函数调用自身以解决问题。递归函数需要有一个或多个终止条件,以防止无限递归。递归可以用于解决许多问题,例如排序、搜索、解析语法等。递归的优点是代码简洁、易于理解,并...
- 数据分析-一元线性回归分析Python
-
前面几篇介绍了数据的相关性分析,通过相关性分析可以看出变量之间的相关性程度。如果我们已经发现变量之间存在明显的相关性了,接下来就可以通过回归分析,计算出具体的相关值,然后可以用于对其他数据的预测。本篇...
- python基础函数(python函数总结)
-
Python函数是代码复用的核心工具,掌握基础函数的使用是编程的关键。以下是Python函数的系统总结,包含内置函数和自定义函数的详细用法,以及实际应用场景。一、Python内置函数(...
- python进阶100集(9)int数据类型深入分析
-
一、基本概念int数据类型基本上来说这里指的都是整形,下一届我们会讲解整形和浮点型的转化,以及精度问题!a=100b=a这里a是变量名,100就是int数据对象,b指向的是a指向的对象,...
- Python学不会来打我(73)python常用的高阶函数汇总
-
python最常用的高阶函数有counter(),sorted(),map(),reduce(),filter()。很多高阶函数都是将一个基础函数作为第一个参数,将另外一个容器集合作为第二个参数,然...
- python中有哪些内置函数可用于编写数值表达式?
-
在Python中,用于编写数值表达式的内置函数很多,它们可以帮助你处理数学运算、类型转换、数值判断等。以下是常用的内置函数(不需要导入模块)按类别归类说明:一、基础数值处理函数函数作用示例ab...
- 如何在Python中获取数字的绝对值?
-
Python有两种获取数字绝对值的方法:内置abs()函数返回绝对值。math.fabs()函数还返回浮点绝对值。abs()函数获取绝对值内置abs()函数返回绝对值,要使用该函数,只需直接调用:a...
- 【Python大语言模型系列】使用dify云版本开发一个智能客服机器人
-
这是我的第359篇原创文章。一、引言上篇文章我们介绍了如何使用dify云版本开发一个简单的工作流:【Python大语言模型系列】一文教你使用dify云版本开发一个AI工作流(完整教程)这篇文章我们将引...
- Python3.11版本使用thriftpy2的问题
-
Python3.11于2022年10月24日发布,但目前thriftpy2在Python3.11版本下无法安装,如果有使用thriftpy2的童鞋,建议晚点再升级到最新版本。...
- uwsgi的python2+3多版本共存(python多版本兼容)
-
一、第一种方式(virtualenv)1、首先,机器需要有python2和python3的可执行环境。确保pip和pip3命令可用。原理就是在哪个环境下安装uwsgi。uwsgi启动的时候,就用的哪个...
- 解释一下Python脚本中版本号声明的作用
-
在Python脚本中声明版本号(如__version__变量)是一种常见的元数据管理实践,在IronPython的兼容性验证机制中具有重要作用。以下是版本号声明的核心作用及实现原理:一、版本号...
- 除了版本号声明,还有哪些元数据可以用于Python脚本的兼容性管理
-
在Python脚本的兼容性管理中,除了版本号声明外,还有多种元数据可以用于增强脚本与宿主环境的交互和验证。以下是一些关键的元数据类型及其应用场景:一、环境依赖声明1.Python版本要求pyth...
- 今年回家没票了?不,我有高科技抢票
-
零基础使用抢票开源软件Py12306一年一度的抢票季就要到了,今天给大家科普一下一款软件的使用方法。软件目前是开源的,禁止用于商用。首先需要在电脑上安装python3.7,首先从官网下载对应的安装包,...
- 生猛!春运抢票神器成GitHub热榜第一,过年回家全靠它了
-
作者:车栗子发自:凹非寺量子位报道春节抢票正在如火如荼的进行,过年回家那肯定需要抢票,每年的抢票大战,都是一场硬战,没有一个好工具,怎么能上战场死锁呢。今天小编推荐一个Python抢票工具,送到...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)