Python数学建模系列(四):数值逼近
off999 2024-11-24 20:12 30 浏览 0 评论
若文中数学公式显示有问题 可查看文章原文
菜鸟学习记:第四十二天
1. 一维插值
插值:求过已知有限个数据点的近似函数。
插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本并穿过。常见差值方法有拉格朗日插值法、分段插值法、样条插值法。
image.png
?
interp1d(x, y) 计算一维插值
1.1 线性插值与样条插值(B-spline)
例1:某电学元件的电压数据记录在0~2.25πA范围与电流关系满足正弦函数,分别用线性插值和样条插值方法给出经过数据点的数值逼近函数曲线。
Demo代码
import matplotlib
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
# 引入中文字体
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 初始数据量 0 - 2.25pi 分为10份 均匀分
x = np.linspace(0, 2.25 * np.pi, 10)
y = np.sin(x)
# 得到差值函数 (使用线性插值)
f_linear = interpolate.interp1d(x, y)
# 新数据 0 - 2.25pi 分为100份 均匀分 (线性插值)
x_new = np.linspace(0, 2.25 * np.pi, 100)
y_new = f_linear(x_new)
# 使用B-spline插值
tck = interpolate.splrep(x, y)
y_bspline = interpolate.splev(x_new, tck)
# 可视化
plt.xlabel(u'安培/A')
plt.ylabel(u'伏特/V')
plt.plot(x, y, "o", label=u"原始数据")
plt.plot(x_new, f_linear(x_new), label=u"线性插值")
plt.plot(x_new, y_bspline, label=u"B-spline插值")
plt.legend()
plt.show()
输出:
image.png
涉及知识点:
- numpy.linspace
- scipy.interpolate.interp1d
- scipy.interpolate.splrep
1.2 高阶样条插值
随着插值节点增多,多项式次数也变高,插值曲线在一些区域出现跳跃,并且越来越偏离原始曲线,称为龙格现象。
例2:某电学元件的电压数据记录在0~10A范围与电流关系满足正弦函数,分别用0~5阶样条插值方法给出经过数据点的数值逼近函数曲线。
Demo代码
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 绘制数据点集
plt.figure(figsize=(12, 9))
plt.plot(x, y, 'ro')
# 根据kind创建interp1d对象f、计算插值结果
xnew = np.linspace(0, 10, 101)
# 邻接 0阶 线性 二阶
for kind in ['nearest', 'zero', 'linear', 'quadratic']:
f = interpolate.interp1d(x, y, kind=kind)
ynew = f(xnew)
plt.plot(xnew, ynew, label=str(kind))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(loc="lower right")
plt.show()
输出:
分别对每一种插值方式进行查看
1.当kind = nearest时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='nearest')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
2.当kind = zero时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='zero')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
3.当kind = linear时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='linear')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
4.当kind = quadratic时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='quadratic')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
5.当kind = cubic时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='cubic')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
2. 二维插值
interp2d(x, y, z, kind=“'') 计算二维插值
2.1 图像模糊处理——样条插值
例3:某图像表达式为,完成图像的二维插值使其变清晰。
Demo代码
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
def func(x, y):
return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2))
# X-Y轴分为15*15的网格
# x, y = np.mgrid[-1:1:15j, -1:1:15j]
x = np.linspace(-1, 1, 15)
y = np.linspace(-1, 1, 15)
x, y = np.meshgrid(x, y)
fvals = func(x, y)
# 二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')
# 计算100*100网格上插值
xnew = np.linspace(-1, 1, 100)
ynew = np.linspace(-1, 1, 100)
fnew = newfunc(xnew, ynew)
xnew, ynew = np.meshgrid(xnew, ynew)
plt.subplot(121)
# extent x轴和y轴范围
im1 = plt.imshow(fvals, extent=[-1, 1, -1, 1], interpolation="nearest", origin="lower",cmap="Reds")
plt.colorbar(im1)
plt.subplot(122)
im2 = plt.imshow(fnew, extent=[-1, 1, -1, 1], interpolation="nearest", origin="lower",cmap="Reds")
plt.colorbar(im2)
plt.show()
输出:
2.2 二维插值的三维图
例4:某图像表达式为,完成三维图像的二维插值可视化。
?
其实就是在二维插值基础上 实现了三维图像的绘制
Demo代码
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
from scipy import interpolate
import matplotlib.cm as cm
import matplotlib.pyplot as plt
def func(x, y):
return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2))
# X-Y轴分为20*20的网格
x = np.linspace(-1, 1, 20)
y = np.linspace(-1, 1, 20)
x, y = np.meshgrid(x, y)
fvals = func(x, y)
# 绘制分图1
fig = plt.figure(figsize=(9, 6))
ax = plt.subplot(1, 2, 1, projection='3d')
surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0.5, antialiased=True)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x,y)')
plt.colorbar(surf, shrink=0.5, aspect=5) # 添加颜色条标注
# 二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')
# 计算100*100网格上插值
xnew = np.linspace(-1, 1, 100)
ynew = np.linspace(-1, 1, 100)
fnew = newfunc(xnew, ynew)
xnew, ynew = np.meshgrid(xnew, ynew)
ax2 = plt.subplot(1, 2, 2, projection='3d')
surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0.5, antialiased=True)
ax2.set_xlabel('xnew')
ax2.set_ylabel('ynew')
ax2.set_zlabel('fnew(x,y)')
plt.colorbar(surf2, shrink=0.5, aspect=5)
# 标注
plt.show()
输出:
3. 最小二乘拟合
拟合指的是已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函 数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。
如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。
从几何意义上讲,拟合是给定了空间中的一些点,找到一个已知形式、未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。
选择参数c使得拟合模型与实际观测值在曲线拟合各点的残差(或离差)ek=yk-f(xk,c)的加权平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线,这种方法叫做最小二乘法。
涉及知识点
from scipy.optimize import leastsq
例5:对下列电学元件的电压电流记录结果进行最小二乘拟合,绘制相应曲线。 电流(A)8.19 2.72 6.39 8.71 4.7 2.66 3.78 电压(V)7.01 2.78 6.47 6.71 4.1 4.23 4.05
在这里插入图片描述
Demo代码
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq
# 引入中文字体
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 设置图字号
plt.figure(figsize=(9, 9))
# 初始数据值
X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78])
Y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4.23, 4.05])
# 计算以p为参数的直线与原始数据之间误差
def f(p):
k, b = p
return (Y - (k * X + b))
# leastsq使得f的输出数组的平方和最小,参数初始值k、b设为[1,0]
r = leastsq(f, [1, 0])
# 得到计算出的最优k、b
k, b = r[0]
# 可视化
plt.scatter(X, Y, s=100, alpha=1.0, marker='o', label=u'数据点')
x = np.linspace(0, 10, 1000)
y = k * x + b
ax = plt.gca()
plt.plot(x, y, color='r', linewidth=5, linestyle=":", markersize=20, label=u'拟合曲线')
plt.legend(loc=0, numpoints=1)
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize='xx-large')
plt.xlabel(u'安培/A')
plt.ylabel(u'伏特/V')
plt.xlim(0, x.max() * 1.1)
plt.ylim(0, y.max() * 1.1)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(loc='upper left')
plt.show()
输出:
结语
学习来源:B站及其课堂PPT,对其中代码进行了复现
文章仅作为学习笔记,记录从0到1的一个过程
希望对您有所帮助,如有错误欢迎小伙伴指正~
相关推荐
- windows server 2008激活
-
CAD不注册激活的话,一般只能试用30天,而且每次打开都会弹出激活窗口。为了能够永久使用,我们需要一个注册机来帮我们生成一个激活码激活它。下载CAD2008注册机(注册机必须与所要激活的CAD版本相对...
- 邮件服务器(hmailserver搭建邮件服务器)
-
电子邮件服务器名称:比如添加的是网易邮箱帐号在“接收邮件(pop、IMAP或HTTP)服务器:”字段中输入pop.163.com。在“发送邮件服务器(SMTP):”字段中输入smtp.163.com...
- win7蓝屏0x0000000a(win7蓝屏代码0x000000f4)
-
电脑蓝屏代码0x0000000a的原因以及解决办法如下:1、在BIOS界面内,进入“Intogratedperipherals”选项里把“SATAConfiguration”项的值改成IDE。&...
- 手机看nwd格式的3d图软件(手机看3d图片)
-
NWD只有具备NavisWorksPublisher许可才能保存NWD文件。这种文件格式存储NWF文件格式存储的所有NavisWorks特定数据,外加模型的几何图形。NWD文件一般比原始的CAD文件...
- windows系统正版(win10正版系统)
-
WINDOWS激活了不一定是正版,可以使用以下方法验证:"开始"菜单——"运行"中输入:1、slmgr.vbs-dli显示:操作系统版本、部分产品密钥、许可证状态...
- 创新声卡驱动安装教程(创新声卡7.1驱动安装)
-
1、准备工作:准备好声卡驱动安装文件,根据自己计算机操作系统的不同而选择不同的版本2、双击安装文件,根据弹出的提示进行操作,进行安装,可以选择安装至默认位置,安装过程中会出现若干设置,最好按照制造厂商...
- win10进入安全模式黑屏(win10进安全模式黑屏什么都不显示)
-
正常情况下进入“安全模式”屏幕是黑色的,没有壁纸。并且,与显卡,显示器没有任何关系。正常模式比安全模式多加载了很多启动,视频模式有所改变。如果出现异常,则有可能是以下问题引起:1、正常模式下...
- 问7升级win10(win 7升win 10)
-
Windows7系统如何升级为win10。嗯,这个是需要重新安装操作系统的。请在安装前先预备好备份好windows7系统下面你自己的个人数据备份到自己的移动硬盘上面。然后通过USB导的方式进行安装,...
- windows中文叫什么(win的中文是什么)
-
windows是窗口的意思,翻译到中文可以是窗户的意思。现在windows的意思大多用在PC领域,泛指微软出品的电脑、手机操作系统。windows操作系统业可以叫做视窗操作系统、可视化图形界面操作系统...
- win7系统激活工具下载免费(win7激活工具免费版)
-
KMSpico是一个非常好用的Win7系统激活工具。它简单易用,只需一步操作即可激活系统,无需复杂的设置和操作。同时,它支持离线激活和在线激活两种方式,让用户可以根据自己的需求选择使用。此外,KMSp...
- tenda路由器怎么设置网速快(tendawifi怎么设置网速快)
-
tenda设置网速最快方法如下:1.登入无线路由器;在浏览器地址输入192.168.0.1;无线路由器进入无线路由器控制界面几乎都是这个地址;原始密码admin。2.接着点击“高级设置”或者页面右上角...
- 功能最全的pe系统(pe系统功能介绍)
-
1、Windows预安装环境,是带有有限服务的最小Win32子系统,基于以保护模式运行的WindowsXPProfessional及以上内核。它包括运行Windows安装程序及脚本、连接网络共享、...
- 华为鸿蒙操作系统下载(华为鸿蒙电脑操作系统下载)
-
鸿蒙系统可以下载拼多多,但需要注意的是,目前拼多多官方并未推出面向鸿蒙系统的专门版本,所以需要通过安装第三方应用市场或者通过APK安装包的方式才能在鸿蒙系统上安装使用。此外,由于鸿蒙系统和拼多多应用的...
- 系统iso怎么安装(系统iso怎么安装应用)
-
ISO系统安装详细教程步骤如下:1.准备所需材料:一台符合系统要求的计算机、ISO系统文件、可启动的USB驱动器或光盘、系统激活密钥(如果需要的话)。2.制作启动盘:如果你使用USB驱动器作为启动...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
系统u盘安装(win11系统u盘安装)
-
Python 批量卸载关联包 pip-autoremove
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
