百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python机器学习之决策树分类详解,保姆级教学!

off999 2024-11-26 07:23 23 浏览 0 评论

这篇文章主要介绍了python机器学习之决策树分类,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

决策树分类与上一篇博客k近邻分类的最大的区别就在于,k近邻是没有训练过程的,而决策树是通过对训练数据进行分析,从而构造决策树,通过决策树来对测试数据进行分类,同样是属于监督学习的范畴。决策树的结果类似如下图:

图中方形方框代表叶节点,带圆边的方框代表决策节点,决策节点与叶节点的不同之处就是决策节点还需要通过判断该节点的状态来进一步分类。

那么如何通过训练数据来得到这样的决策树呢?

这里涉及到信息论中一个很重要的信息度量方式,香农熵。通过香农熵可以计算信息增益。

香农熵的计算公式如下:

p(xi)代表数据被分在i类的概率,可以通过计算数据集中i类的个数与总的数据个数之比得到,计算香农熵的python代码如下:

from math import log
def calcShannonEnt(dataSet):
numEntries=len(dataSet)
labelCounts={}
for featVec in dataSet:
currentLabel=featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel]=0
labelCounts[currentLabel]+=1
shannonEnt=0.0
for key in labelCounts:
prob=float(labelCounts[key])/numEntries
shannonEnt-=prob*log(prob,2)
return shannonEnt

一般来说,数据集中,不同的类别越多,即信息量越大,那么熵值越大,通过计算熵,就可以知道选择哪一个特征能够最好的分开数据,这个特征就是一个决策节点。

下面就可以根据训练数据开始构造决策树。

首先编写一个根据给定特征划分数据集的函数:

#划分数据集,返回第axis轴为value值的数据集
def splitDataSet(dataset,axis,value):
retDataSet=[]
for featVec in dataset:
if featVec[axis]==value:
reducedFeatVec=featVec[:]
del(reducedFeatVec[axis])
retDataSet.append(reducedFeatVec)
return retDataSet

下面找出数据集中能够最好划分数据的那个特征,它的原理是计算经过每一个特征轴划分后的数据的信息增益,信息增益越大,代表通过该特征轴划分是最优的。

#选择最好的数据集划分方式,返回最佳的轴
def chooseBestFeatureToSplit(dataset):
numFeatures=len(dataset[0])-1
baseEntrypy=calcShannonEnt(dataset)
bestInfoGain=0.0
bestFeature=-1
for i in range(numFeatures):
featList=[example[i] for example in dataset]
uniqueVals=set(featList)
newEntrypy=0.0
for value in uniqueVals:
subDataSet=splitDataSet(dataset,i,value)
prob=len(subDataSet)/float(len(dataset))
newEntrypy+=prob*calcShannonEnt(subDataSet)
infoGain=baseEntrypy-newEntrypy #计算信息增益,信息增益最大,就是最好的划分
if infoGain>bestInfoGain:
bestInfoGain=infoGain
bestFeature=i
return bestFeature

找出最优的划分轴之后,便可以通过递归来构建决策树,递归有两个终止条件,第一个是程序遍历完所有划分数据集的特征轴,第二 个是每个分支下的所有实例都有相同的分类。那么,这里有一个问题,就是当遍历完所有数据集时,分出来的数据还不是同一类别,这种时候,一般选取类别最多的作为该叶节点的分类。

首先编写一个在类别向量中找出类别最多的那一类:

#计算类型列表中,类型最多的类型
def majorityCnt(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount[vote]+=1
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]

递归创建决策树:

#根据训练数据创建树
def createTree(dataSet,labels):
myLabels=labels[:]
classList=[example[-1] for example in dataSet] #类别
if classList.count(classList[0])==len(classList):#数据集中都是同类
return classList[0]
if len(dataSet[0])==1:#训练集中只有一个数据
return majorityCnt(classList)
bestFeat=chooseBestFeatureToSplit(dataSet)
bestFeatLabel=myLabels[bestFeat]
myTree={bestFeatLabel:{}}
del(myLabels[bestFeat])
featValue=[example[bestFeat] for example in dataSet]
uniqueVal=set(featValue)
for value in uniqueVal:
subLabels=myLabels[:]
myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
return myTree

将上述代码保存到tree.py中,在命令窗口输入以下代码:

>>> dataSet=[[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no']]
>>> labels=['no sufacing','flippers']
>>> tree.createTree(dataSet,labels)
{'no sufacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

就得到了决策树的结构,可以画出树的结构图

上面数据的实际意义是通过生物特征,来判断是否属于鱼类,第一列数据中1代表在水中可以生存,0代表在水中不可以生存。第二列中1代表有脚蹼,0代表没有脚蹼。yes是鱼类,no不是鱼类。label是训练数据中每一列代表的意义。那么通过训练数据我们就构造出了决策树,由图可知,我们首先可以根据第一列特征,即在水中是否可以生存来进行第一步判断,不可以生存的肯定不是鱼类,可以生存的还要看是否有脚蹼,有脚蹼的才是鱼类。

不难看出,决策树最大的优势就是它的数据形式易于理解,分类方式直观。

训练出决策树之后,我们就可以根据根据决策树来对新的测试数据进行分类。

分类代码如下:

#根据决策树分类
def classify(inputTree,featLabels,testVec):
firstStr=inputTree.keys()[0]
secondDict=inputTree[firstStr]
featIndex=featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex]==key:
if type(secondDict[key]).__name__=='dict':
classLabel=classify(secondDict[key],featLabels,testVec)
else:
classLabel=secondDict[key]
return classLabel

这里有一个通过决策数算法进行分类的一个实例,眼科医生是如何判断患者需要佩戴隐形眼镜的类型的。

判断的结果有三种,硬材料,软材料和不适合佩戴。

训练数据采用隐形眼镜数据集,数据集来自UCI数据库,它包含了很多患者眼部状况的观察条件以及医生推荐的眼镜类型。

数据集如下:

测试代码如下:

def example():
fr=open('lenses.txt')
lenses=[inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels=['age','prescript','astigmatic','tearRate']
lensesTree=createTree(lenses,lensesLabels)
return lensesTree

结果:

决策树结构如下:

这样,医生便可以一步步的观察来最终得知该患者适合什么材料的隐形眼镜了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小编。

相关推荐

apisix动态修改路由的原理_动态路由协议rip的配置

ApacheAPISIX能够实现动态修改路由(DynamicRouting)的核心原理,是它将传统的静态Nginx配置彻底解耦,通过中心化配置存储(如etcd)+OpenRest...

使用 Docker 部署 OpenResty Manager 搭建可视化反向代理系统

在之前的文章中,xiaoz推荐过可视化Nginx反向代理工具NginxProxyManager,最近xiaoz还发现一款功能更加强大,界面更加漂亮的OpenRestyManager,完全可以替代...

OpenResty 入门指南:从基础到动态路由实战

一、引言1.1OpenResty简介OpenResty是一款基于Nginx的高性能Web平台,通过集成Lua脚本和丰富的模块,将Nginx从静态反向代理转变为可动态编程的应用平台...

OpenResty 的 Lua 动态能力_openresty 动态upstream

OpenResty的Lua动态能力是其最核心的优势,它将LuaJIT嵌入到Nginx的每一个请求处理阶段,使得开发者可以用Lua脚本动态控制请求的生命周期,而无需重新编译或rel...

LVS和Nginx_lvs和nginx的区别

LVS(LinuxVirtualServer)和Nginx都是常用的负载均衡解决方案,广泛应用于大型网站和分布式系统中,以提高系统的性能、可用性和可扩展性。一、基本概念1.LVS(Linux...

外网连接到内网服务器需要端口映射吗,如何操作?

外网访问内网服务器通常需要端口映射(或内网穿透),这是跨越公网与私网边界的关键技术。操作方式取决于网络环境,以下分场景详解。一、端口映射的核心原理内网服务器位于私有IP地址段(如192.168.x.x...

Nginx如何解决C10K问题(1万个并发连接)?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。Nginx是大型架构的必备中间件,下面我就全面来详解NginxC10k问题@mikechen文章来源:mikec...

炸场!Spring Boot 9 大内置过滤器实战手册:从坑到神

炸场!SpringBoot9大内置过滤器实战手册:从坑到神在Java开发圈摸爬滚打十年,见过太多团队重复造轮子——明明SpringBoot自带的过滤器就能解决的问题,偏偏要手写几十...

WordPress和Typecho xmlrpc漏洞_wordpress主题漏洞

一般大家都关注WordPress,毕竟用户量巨大,而国内的Typecho作为轻量级的博客系统就关注的人并不多。Typecho有很多借鉴WordPress的,包括兼容的xmlrpc接口,而WordPre...

Linux Shell 入门教程(六):重定向、管道与命令替换

在前几篇中,我们学习了函数、流程控制等Shell编程的基础内容。现在我们来探索更高级的功能:如何控制数据流向、将命令链接在一起、让命令间通信变得可能。一、输入输出重定向(>、>>...

Nginx的location匹配规则,90%的人都没完全搞懂,一张图让你秒懂

刚配完nginx网站就崩了?运维和开发都头疼的location匹配规则优先级,弄错顺序直接导致500错误。核心在于nginx处理location时顺序严格:先精确匹配=,然后前缀匹配^~,接着按顺序正...

liunx服务器查看故障命令有那些?_linux查看服务器性能命令

在Linux服务器上排查故障时,需要使用一系列命令来检查系统状态、日志文件、资源利用情况以及网络状况。以下是常用的故障排查命令,按照不同场景分类说明。1.系统资源相关命令1.1查看CPU使...

服务器被入侵的常见迹象有哪些?_服务器入侵可以被完全操纵吗

服务器被入侵可能会导致数据泄露、服务异常或完全失控。及时发现入侵迹象能够帮助你尽早采取措施,减少损失。以下是服务器被入侵的常见迹象以及相关的分析与处理建议。1.服务器被入侵的常见迹象1.1系统性能...

前端错误可观测最佳实践_前端错误提示

场景解析对于前端项目,生产环境的代码通常经过压缩、混淆和打包处理,当代码在运行过程中产生错误时,通常难以还原原始代码从而定位问题,对于深度混淆尤其如此,因此Mozilla自2011年开始发起并...

8个能让你的Kubernetes集群“瞬间崩溃”的配置错误

错误一:livenessProbe探针“自杀式”配置——30秒内让Pod重启20次现象:Pod状态在Running→Terminating→CrashLoopBackOff之间循环,重启间隔仅...

取消回复欢迎 发表评论: