百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python机器学习之决策树分类详解,保姆级教学!

off999 2024-11-26 07:23 29 浏览 0 评论

这篇文章主要介绍了python机器学习之决策树分类,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

决策树分类与上一篇博客k近邻分类的最大的区别就在于,k近邻是没有训练过程的,而决策树是通过对训练数据进行分析,从而构造决策树,通过决策树来对测试数据进行分类,同样是属于监督学习的范畴。决策树的结果类似如下图:

图中方形方框代表叶节点,带圆边的方框代表决策节点,决策节点与叶节点的不同之处就是决策节点还需要通过判断该节点的状态来进一步分类。

那么如何通过训练数据来得到这样的决策树呢?

这里涉及到信息论中一个很重要的信息度量方式,香农熵。通过香农熵可以计算信息增益。

香农熵的计算公式如下:

p(xi)代表数据被分在i类的概率,可以通过计算数据集中i类的个数与总的数据个数之比得到,计算香农熵的python代码如下:

from math import log
def calcShannonEnt(dataSet):
numEntries=len(dataSet)
labelCounts={}
for featVec in dataSet:
currentLabel=featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel]=0
labelCounts[currentLabel]+=1
shannonEnt=0.0
for key in labelCounts:
prob=float(labelCounts[key])/numEntries
shannonEnt-=prob*log(prob,2)
return shannonEnt

一般来说,数据集中,不同的类别越多,即信息量越大,那么熵值越大,通过计算熵,就可以知道选择哪一个特征能够最好的分开数据,这个特征就是一个决策节点。

下面就可以根据训练数据开始构造决策树。

首先编写一个根据给定特征划分数据集的函数:

#划分数据集,返回第axis轴为value值的数据集
def splitDataSet(dataset,axis,value):
retDataSet=[]
for featVec in dataset:
if featVec[axis]==value:
reducedFeatVec=featVec[:]
del(reducedFeatVec[axis])
retDataSet.append(reducedFeatVec)
return retDataSet

下面找出数据集中能够最好划分数据的那个特征,它的原理是计算经过每一个特征轴划分后的数据的信息增益,信息增益越大,代表通过该特征轴划分是最优的。

#选择最好的数据集划分方式,返回最佳的轴
def chooseBestFeatureToSplit(dataset):
numFeatures=len(dataset[0])-1
baseEntrypy=calcShannonEnt(dataset)
bestInfoGain=0.0
bestFeature=-1
for i in range(numFeatures):
featList=[example[i] for example in dataset]
uniqueVals=set(featList)
newEntrypy=0.0
for value in uniqueVals:
subDataSet=splitDataSet(dataset,i,value)
prob=len(subDataSet)/float(len(dataset))
newEntrypy+=prob*calcShannonEnt(subDataSet)
infoGain=baseEntrypy-newEntrypy #计算信息增益,信息增益最大,就是最好的划分
if infoGain>bestInfoGain:
bestInfoGain=infoGain
bestFeature=i
return bestFeature

找出最优的划分轴之后,便可以通过递归来构建决策树,递归有两个终止条件,第一个是程序遍历完所有划分数据集的特征轴,第二 个是每个分支下的所有实例都有相同的分类。那么,这里有一个问题,就是当遍历完所有数据集时,分出来的数据还不是同一类别,这种时候,一般选取类别最多的作为该叶节点的分类。

首先编写一个在类别向量中找出类别最多的那一类:

#计算类型列表中,类型最多的类型
def majorityCnt(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount[vote]+=1
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]

递归创建决策树:

#根据训练数据创建树
def createTree(dataSet,labels):
myLabels=labels[:]
classList=[example[-1] for example in dataSet] #类别
if classList.count(classList[0])==len(classList):#数据集中都是同类
return classList[0]
if len(dataSet[0])==1:#训练集中只有一个数据
return majorityCnt(classList)
bestFeat=chooseBestFeatureToSplit(dataSet)
bestFeatLabel=myLabels[bestFeat]
myTree={bestFeatLabel:{}}
del(myLabels[bestFeat])
featValue=[example[bestFeat] for example in dataSet]
uniqueVal=set(featValue)
for value in uniqueVal:
subLabels=myLabels[:]
myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
return myTree

将上述代码保存到tree.py中,在命令窗口输入以下代码:

>>> dataSet=[[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no']]
>>> labels=['no sufacing','flippers']
>>> tree.createTree(dataSet,labels)
{'no sufacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

就得到了决策树的结构,可以画出树的结构图

上面数据的实际意义是通过生物特征,来判断是否属于鱼类,第一列数据中1代表在水中可以生存,0代表在水中不可以生存。第二列中1代表有脚蹼,0代表没有脚蹼。yes是鱼类,no不是鱼类。label是训练数据中每一列代表的意义。那么通过训练数据我们就构造出了决策树,由图可知,我们首先可以根据第一列特征,即在水中是否可以生存来进行第一步判断,不可以生存的肯定不是鱼类,可以生存的还要看是否有脚蹼,有脚蹼的才是鱼类。

不难看出,决策树最大的优势就是它的数据形式易于理解,分类方式直观。

训练出决策树之后,我们就可以根据根据决策树来对新的测试数据进行分类。

分类代码如下:

#根据决策树分类
def classify(inputTree,featLabels,testVec):
firstStr=inputTree.keys()[0]
secondDict=inputTree[firstStr]
featIndex=featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex]==key:
if type(secondDict[key]).__name__=='dict':
classLabel=classify(secondDict[key],featLabels,testVec)
else:
classLabel=secondDict[key]
return classLabel

这里有一个通过决策数算法进行分类的一个实例,眼科医生是如何判断患者需要佩戴隐形眼镜的类型的。

判断的结果有三种,硬材料,软材料和不适合佩戴。

训练数据采用隐形眼镜数据集,数据集来自UCI数据库,它包含了很多患者眼部状况的观察条件以及医生推荐的眼镜类型。

数据集如下:

测试代码如下:

def example():
fr=open('lenses.txt')
lenses=[inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels=['age','prescript','astigmatic','tearRate']
lensesTree=createTree(lenses,lensesLabels)
return lensesTree

结果:

决策树结构如下:

这样,医生便可以一步步的观察来最终得知该患者适合什么材料的隐形眼镜了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小编。

相关推荐

如何强制删除u盘文件(强制删除u盘内容)

1、电脑上下载安装安全杀毒类软件。2、使用强力卸载。3、找到U盘上需要卸载的文件,右击强力卸载可以卸载顽固型文件。4、被暂用的文件也删除不了可以退出U盘重启电脑重新开机插入U盘进行删除。5、不能删除的...

directx官方下载win7(directx download)

点开始-----运行,输入dxdiag,回车后打开“DirectX诊断工具”窗口,进入“显示”选项卡,看一下是否启用了加速,没有的话,单击下面的“DirectX功能”项中的“启用”按钮,这样便打开了D...

u盘视频无法播放怎么办(u盘上视频没办法播放)

解决办法:1.检查U盘存储格式是否为FAT32,如果不是,请将其格式化为FAT32; 2.检查U盘中视频文件是否损坏,如果有损坏文件,请尝试重新复制一份; 3.检查U盘中存储...

笔记本电脑无法正常启动怎么修复
笔记本电脑无法正常启动怎么修复

1.可以解决。2.Windows未能启动可能是由于系统文件损坏、硬件故障或病毒感染等原因引起的。解决方法可以尝试使用Windows安全模式启动、修复启动、还原系统、重装系统等方法。3.如果以上方法都无法解决问题,可以考虑联系专业的电脑...

2025-11-16 04:03 off999

联想设置u盘为第一启动项(联想怎么设置u盘启动为第一启动项)

联想电脑设置u盘为第一启动项方法如下一、将电脑开机,开机瞬间按F2键进入bios设置界面二、在上面5个选项里找到boot选项,这里按键盘上左右键来移动三、这里利用键盘上下键选到USB选项,然后按F5/...

家用路由器哪个牌子最好信号最稳定
家用路由器哪个牌子最好信号最稳定

TP-LINK最好,信号最稳定。路由器是连接两个或多个网络的硬件设备,在网络间起网关的作用,是读取每一个数据包中的地址然后决定如何传送的专用智能性的网络设备。它能够理解不同的协议,例如某个局域网使用的以太网协议,因特网使用的TCP/IP协议...

2025-11-16 03:03 off999

安卓纯净版系统(安卓的纯净模式)

安卓系统有纯净模式的,安卓系统必须有纯净模式的,刷入纯净版系统可以去除一些预装的应用和系统自带软件,提高手机的运行速度和使用体验。但需要注意的是刷机有一定风险,请确保你已经备份好手机数据并了解安装风险...

deepin系统怎么安装软件(deepin操作系统怎么安装软件)

deepin是一个基于Linux的操作系统,它默认不支持APK应用。要在deepin上安装APK应用,需要先安装一个Android模拟器,例如Anbox,然后从GooglePlayStore或其他...

下载app安装包(下载app安装包损坏)
下载app安装包(下载app安装包损坏)

1,没有刷机过的,可以在手机里面,找到系统自带的文件管理-(如图),2,点开后,可以直接看到文件分类,找到,安装包,点开,(如下图)3,即可看到手机里面的未安装APP;操作方法01如果是直接在浏览器上下载的软件,那就直接点开浏览器,然后点击...

2025-11-16 01:51 off999

window7旗舰版密码忘记(win7密码忘记了怎么办旗舰版)

1、重启电脑按f8选择“带命令提示符的安全模式”,跳出“CommandPrompt”窗口。2、在窗口中输入“netuserasd/add”回车,再升级输入“netlocalgroupadmi...

windows7界面(windows7界面由哪几个部分组成)

您好!Windows7一般有两种界面。一种为Aero界面,一种为经典界面。Aero界面还包含三个小分类:性能最佳Aero,BasicAero,对比度Aero。性能最佳Aero是Windows7最...

wps截图快捷键(WPS截图快捷键是哪个)

在WPS中进行截屏,可以通过快捷键来实现。具体操作在按下“Alt+PrtSc”之后,就会将当前屏幕截图保存到剪贴板中。若需要将截图保存为图片文件,则在粘贴时选择“文件夹”而不是“粘贴”,再选定存储...

台式电脑最佳配置清单及价格
  • 台式电脑最佳配置清单及价格
  • 台式电脑最佳配置清单及价格
  • 台式电脑最佳配置清单及价格
  • 台式电脑最佳配置清单及价格
电脑主机自动关机是什么原因

  原因一、软件  1.病毒破坏,自从有了计算机以后不久,计算机病毒也应运而生。当网络成为当今社会的信息大动脉后,病毒的传播更加方便,所以也时不时的干扰和破坏我们的正常工作。比较典型的就是前一段时间对...

显示桌面快捷键(怎么设置桌面快捷图标)

电脑上显示桌面的快捷键如下:1,常用。同时按Win徽标键+D键(win键位于Ctrl与Alt之间像个飘起来的田字):按一次显示桌面,再同时按一次返回到窗口。2,同时按Win徽标键+M:原本含义是“...

取消回复欢迎 发表评论: