使用Python中从头开始构建决策树算法
off999 2024-11-26 07:23 13 浏览 0 评论
决策树(Decision Tree)是一种常见的机器学习算法,被广泛应用于分类和回归任务中。并且再其之上的随机森林和提升树等算法一直是表格领域的最佳模型,所以本文将介绍理解其数学概念,并在Python中动手实现,这可以作为了解这类算法的基础知识。
在深入研究代码之前,我们先要了解支撑决策树的数学概念:熵和信息增益
熵:杂质的量度
熵作为度量来量化数据集中的杂质或无序。特别是对于决策树,熵有助于衡量与一组标签相关的不确定性。数学上,数据集S的熵用以下公式计算:
Entropy(S) = -p_pos * log2(p_pos) - p_neg * log2(p_neg)
P_pos表示数据集中正标签的比例,P_neg表示数据集中负标签的比例。
更高的熵意味着更大的不确定性或杂质,而更低的熵意味着更均匀的数据集。
信息增益:通过拆分提升知识
信息增益是评估通过基于特定属性划分数据集所获得的熵的减少。也就是说它衡量的是执行分割后标签确定性的增加。
数学上,对数据集S中属性a进行分割的信息增益计算如下:
Information Gain(S, A) = Entropy(S) - ∑ (|S_v| / |S|) * Entropy(S_v)
S 表示原始数据集,A表示要拆分的属性。S_v表示属性A保存值v的S的子集。
目标是通过选择使信息增益最大化的属性,在决策树中创建信息量最大的分割。
在Python中实现决策树算法
有了以上的基础,就可以使用Python从头开始编写Decision Tree算法。
首先导入基本的numpy库,它将有助于我们的算法实现。
import numpy as np
创建DecisionTree类
class DecisionTree:
def __init__(self, max_depth=None):
self.max_depth = max_depth
定义了DecisionTree类来封装决策树。max_depth参数是树的最大深度,以防止过拟合。
def fit(self, X, y, depth=0):
n_samples, n_features = X.shape
unique_classes = np.unique(y)
# Base cases
if (self.max_depth is not None and depth >= self.max_depth) or len(unique_classes) == 1:
self.label = unique_classes[np.argmax(np.bincount(y))]
return
拟合方法是决策树算法的核心。它需要训练数据X和相应的标签,以及一个可选的深度参数来跟踪树的深度。我们以最简单的方式处理树的生长:达到最大深度或者遇到纯类。
确定最佳分割属性,循环遍历所有属性以找到信息增益最大化的属性。_information_gain方法(稍后解释)帮助计算每个属性的信息增益。
best_attribute = None
best_info_gain = -1
for feature in range(n_features):
info_gain = self._information_gain(X, y, feature)
if info_gain > best_info_gain:
best_info_gain = info_gain
best_attribute = feature
处理不分割属性,如果没有属性产生正的信息增益,则将类标签分配为节点的标签。
if best_attribute is None:
self.label = unique_classes[np.argmax(np.bincount(y))]
return
分割和递归调用,下面代码确定了分割的最佳属性,并创建两个子节点。根据属性的阈值将数据集划分为左右两个子集。
self.attribute = best_attribute
self.threshold = np.median(X[:, best_attribute])
left_indices = X[:, best_attribute] <= self.threshold
right_indices = ~left_indices
self.left = DecisionTree(max_depth=self.max_depth)
self.right = DecisionTree(max_depth=self.max_depth)
self.left.fit(X[left_indices], y[left_indices], depth + 1)
self.right.fit(X[right_indices], y[right_indices], depth + 1)
并且通过递归调用左子集和右子集的fit方法来构建子树。
预测方法使用训练好的决策树进行预测。如果到达一个叶节点(带有标签的节点),它将叶节点的标签分配给X中的所有数据点。
def predict(self, X):
if hasattr(self, 'label'):
return np.array([self.label] * X.shape[0])
当遇到非叶节点时,predict方法根据属性阈值递归遍历树的左子树和右子树。来自双方的预测被连接起来形成最终的预测数组。
is_left = X[:, self.attribute] <= self.threshold
left_predictions = self.left.predict(X[is_left])
right_predictions = self.right.predict(X[~is_left])
return np.concatenate((left_predictions, right_predictions))
下面两个方法是决策树的核心代码,并且可以使用不同的算法来进行计算,比如ID3 算法使用信息增益作为特征选择的标准,该标准度量了将某特征用于划分数据后,对分类结果的不确定性减少的程度。算法通过递归地选择信息增益最大的特征来构建决策树,也就是我们现在要演示的算法。
_information_gain方法计算给定属性的信息增益。它计算分裂后子熵的加权平均值,并从父熵中减去它。
def _information_gain(self, X, y, feature):
parent_entropy = self._entropy(y)
unique_values = np.unique(X[:, feature])
weighted_child_entropy = 0
for value in unique_values:
is_value = X[:, feature] == value
child_entropy = self._entropy(y[is_value])
weighted_child_entropy += (np.sum(is_value) / len(y)) * child_entropy
return parent_entropy - weighted_child_entropy
熵的计算
def _entropy(self, y):
_, counts = np.unique(y, return_counts=True)
probabilities = counts / len(y)
return -np.sum(probabilities * np.log2(probabilities))
_entropy方法计算数据集y的熵,它计算每个类的概率,然后使用前面提到的公式计算熵。
常见的算法还有:
C4.5 是 ID3 的改进版本,C4.5 算法在特征选择时使用信息增益比,这是对信息增益的一种归一化,用于解决信息增益在选择特征时偏向于取值较多的特征的问题。
CART 与 ID3 和 C4.5 算法不同,CART(Classification And Regression Tree)又被称为分类回归树,算法采用基尼不纯度(Gini impurity)来度量节点的不确定性,该不纯度度量了从节点中随机选取两个样本,它们属于不同类别的概率。
ID3、C4.5 和 CART 算法都是基于决策树的经典算法,像Xgboost就是使用的CART 作为基础模型。
总结
以上就是使用Python中构造了一个完整的决策树算法的全部。决策树的核心思想是根据数据的特征逐步进行划分,使得每个子集内的数据尽量属于同一类别或具有相似的数值。在构建决策树时,通常会使用一些算法来选择最佳的特征和分割点,以达到更好的分类或预测效果。
作者:Matteo Possamai
- 上一篇:Python机器学习之决策树分类详解,保姆级教学!
- 下一篇:决策树模型
相关推荐
- 面试官:来,讲一下枚举类型在开发时中实际应用场景!
-
一.基本介绍枚举是JDK1.5新增的数据类型,使用枚举我们可以很好的描述一些特定的业务场景,比如一年中的春、夏、秋、冬,还有每周的周一到周天,还有各种颜色,以及可以用它来描述一些状态信息,比如错...
- 一日一技:11个基本Python技巧和窍门
-
1.两个数字的交换.x,y=10,20print(x,y)x,y=y,xprint(x,y)输出:102020102.Python字符串取反a="Ge...
- Python Enum 技巧,让代码更简洁、更安全、更易维护
-
如果你是一名Python开发人员,你很可能使用过enum.Enum来创建可读性和可维护性代码。今天发现一个强大的技巧,可以让Enum的境界更进一层,这个技巧不仅能提高可读性,还能以最小的代价增...
- Python元组编程指导教程(python元组的概念)
-
1.元组基础概念1.1什么是元组元组(Tuple)是Python中一种不可变的序列类型,用于存储多个有序的元素。元组与列表(list)类似,但元组一旦创建就不能修改(不可变),这使得元组在某些场景...
- 你可能不知道的实用 Python 功能(python有哪些用)
-
1.超越文件处理的内容管理器大多数开发人员都熟悉使用with语句进行文件操作:withopen('file.txt','r')asfile:co...
- Python 2至3.13新特性总结(python 3.10新特性)
-
以下是Python2到Python3.13的主要新特性总结,按版本分类整理:Python2到Python3的重大变化Python3是一个不向后兼容的版本,主要改进包括:pri...
- Python中for循环访问索引值的方法
-
技术背景在Python编程中,我们经常需要在循环中访问元素的索引值。例如,在处理列表、元组等可迭代对象时,除了要获取元素本身,还需要知道元素的位置。Python提供了多种方式来实现这一需求,下面将详细...
- Python enumerate核心应用解析:索引遍历的高效实践方案
-
喜欢的条友记得关注、点赞、转发、收藏,你们的支持就是我最大的动力源泉。根据GitHub代码分析统计,使用enumerate替代range(len())写法可减少38%的索引错误概率。本文通过12个生产...
- Python入门到脱坑经典案例—列表去重
-
列表去重是Python编程中常见的操作,下面我将介绍多种实现列表去重的方法,从基础到进阶,帮助初学者全面掌握这一技能。方法一:使用集合(set)去重(最简单)pythondefremove_dupl...
- Python枚举类工程实践:常量管理的标准化解决方案
-
本文通过7个生产案例,系统解析枚举类在工程实践中的应用,覆盖状态管理、配置选项、错误代码等场景,适用于Web服务开发、自动化测试及系统集成领域。一、基础概念与语法演进1.1传统常量与枚举类对比#传...
- 让Python枚举更强大!教你玩转Enum扩展
-
为什么你需要关注Enum?在日常开发中,你是否经常遇到这样的代码?ifstatus==1:print("开始处理")elifstatus==2:pri...
- Python枚举(Enum)技巧,你值得了解
-
枚举(Enum)提供了更清晰、结构化的方式来定义常量。通过为枚举添加行为、自动分配值和存储额外数据,可以提升代码的可读性、可维护性,并与数据库结合使用时,使用字符串代替数字能简化调试和查询。Pytho...
- 78行Python代码帮你复现微信撤回消息!
-
来源:悟空智能科技本文约700字,建议阅读5分钟。本文基于python的微信开源库itchat,教你如何收集私聊撤回的信息。[导读]Python曾经对我说:"时日不多,赶紧用Python"。于是看...
- 登录人人都是产品经理即可获得以下权益
-
文章介绍如何利用Cursor自动开发Playwright网页自动化脚本,实现从选题、写文、生图的全流程自动化,并将其打包成API供工作流调用,提高工作效率。虽然我前面文章介绍了很多AI工作流,但它们...
- Python常用小知识-第二弹(python常用方法总结)
-
一、Python中使用JsonPath提取字典中的值JsonPath是解析Json字符串用的,如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的,使用jsonpat...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)