百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

使用Python中从头开始构建决策树算法

off999 2024-11-26 07:23 26 浏览 0 评论

决策树(Decision Tree)是一种常见的机器学习算法,被广泛应用于分类和回归任务中。并且再其之上的随机森林和提升树等算法一直是表格领域的最佳模型,所以本文将介绍理解其数学概念,并在Python中动手实现,这可以作为了解这类算法的基础知识。

在深入研究代码之前,我们先要了解支撑决策树的数学概念:熵和信息增益

熵:杂质的量度

熵作为度量来量化数据集中的杂质或无序。特别是对于决策树,熵有助于衡量与一组标签相关的不确定性。数学上,数据集S的熵用以下公式计算:

Entropy(S) = -p_pos * log2(p_pos) - p_neg * log2(p_neg)

P_pos表示数据集中正标签的比例,P_neg表示数据集中负标签的比例。

更高的熵意味着更大的不确定性或杂质,而更低的熵意味着更均匀的数据集。

信息增益:通过拆分提升知识

信息增益是评估通过基于特定属性划分数据集所获得的熵的减少。也就是说它衡量的是执行分割后标签确定性的增加。

数学上,对数据集S中属性a进行分割的信息增益计算如下:

Information Gain(S, A) = Entropy(S) - ∑ (|S_v| / |S|) * Entropy(S_v)

S 表示原始数据集,A表示要拆分的属性。S_v表示属性A保存值v的S的子集。

目标是通过选择使信息增益最大化的属性,在决策树中创建信息量最大的分割。

在Python中实现决策树算法

有了以上的基础,就可以使用Python从头开始编写Decision Tree算法。

首先导入基本的numpy库,它将有助于我们的算法实现。

import numpy as np

创建DecisionTree类

class DecisionTree:
def __init__(self, max_depth=None):
self.max_depth = max_depth

定义了DecisionTree类来封装决策树。max_depth参数是树的最大深度,以防止过拟合。

def fit(self, X, y, depth=0):
n_samples, n_features = X.shape
unique_classes = np.unique(y)

# Base cases
if (self.max_depth is not None and depth >= self.max_depth) or len(unique_classes) == 1:
self.label = unique_classes[np.argmax(np.bincount(y))]
return

拟合方法是决策树算法的核心。它需要训练数据X和相应的标签,以及一个可选的深度参数来跟踪树的深度。我们以最简单的方式处理树的生长:达到最大深度或者遇到纯类。

确定最佳分割属性,循环遍历所有属性以找到信息增益最大化的属性。_information_gain方法(稍后解释)帮助计算每个属性的信息增益。

best_attribute = None
best_info_gain = -1
for feature in range(n_features):
info_gain = self._information_gain(X, y, feature)
if info_gain > best_info_gain:
best_info_gain = info_gain
best_attribute = feature

处理不分割属性,如果没有属性产生正的信息增益,则将类标签分配为节点的标签。

if best_attribute is None:
self.label = unique_classes[np.argmax(np.bincount(y))]
return

分割和递归调用,下面代码确定了分割的最佳属性,并创建两个子节点。根据属性的阈值将数据集划分为左右两个子集。

self.attribute = best_attribute
self.threshold = np.median(X[:, best_attribute])
left_indices = X[:, best_attribute] <= self.threshold
right_indices = ~left_indices
self.left = DecisionTree(max_depth=self.max_depth)
self.right = DecisionTree(max_depth=self.max_depth)
self.left.fit(X[left_indices], y[left_indices], depth + 1)
self.right.fit(X[right_indices], y[right_indices], depth + 1)

并且通过递归调用左子集和右子集的fit方法来构建子树。

预测方法使用训练好的决策树进行预测。如果到达一个叶节点(带有标签的节点),它将叶节点的标签分配给X中的所有数据点。

def predict(self, X):
if hasattr(self, 'label'):
return np.array([self.label] * X.shape[0])

当遇到非叶节点时,predict方法根据属性阈值递归遍历树的左子树和右子树。来自双方的预测被连接起来形成最终的预测数组。

is_left = X[:, self.attribute] <= self.threshold
left_predictions = self.left.predict(X[is_left])
right_predictions = self.right.predict(X[~is_left])

return np.concatenate((left_predictions, right_predictions))

下面两个方法是决策树的核心代码,并且可以使用不同的算法来进行计算,比如ID3 算法使用信息增益作为特征选择的标准,该标准度量了将某特征用于划分数据后,对分类结果的不确定性减少的程度。算法通过递归地选择信息增益最大的特征来构建决策树,也就是我们现在要演示的算法。

_information_gain方法计算给定属性的信息增益。它计算分裂后子熵的加权平均值,并从父熵中减去它。

def _information_gain(self, X, y, feature):
parent_entropy = self._entropy(y)

unique_values = np.unique(X[:, feature])
weighted_child_entropy = 0

for value in unique_values:
is_value = X[:, feature] == value
child_entropy = self._entropy(y[is_value])
weighted_child_entropy += (np.sum(is_value) / len(y)) * child_entropy

return parent_entropy - weighted_child_entropy

熵的计算

def _entropy(self, y):
_, counts = np.unique(y, return_counts=True)
probabilities = counts / len(y)
return -np.sum(probabilities * np.log2(probabilities))

_entropy方法计算数据集y的熵,它计算每个类的概率,然后使用前面提到的公式计算熵。

常见的算法还有:

C4.5 是 ID3 的改进版本,C4.5 算法在特征选择时使用信息增益比,这是对信息增益的一种归一化,用于解决信息增益在选择特征时偏向于取值较多的特征的问题。

CART 与 ID3 和 C4.5 算法不同,CART(Classification And Regression Tree)又被称为分类回归树,算法采用基尼不纯度(Gini impurity)来度量节点的不确定性,该不纯度度量了从节点中随机选取两个样本,它们属于不同类别的概率。

ID3、C4.5 和 CART 算法都是基于决策树的经典算法,像Xgboost就是使用的CART 作为基础模型。

总结

以上就是使用Python中构造了一个完整的决策树算法的全部。决策树的核心思想是根据数据的特征逐步进行划分,使得每个子集内的数据尽量属于同一类别或具有相似的数值。在构建决策树时,通常会使用一些算法来选择最佳的特征和分割点,以达到更好的分类或预测效果。

作者:Matteo Possamai

相关推荐

如何强制删除u盘文件(强制删除u盘内容)

1、电脑上下载安装安全杀毒类软件。2、使用强力卸载。3、找到U盘上需要卸载的文件,右击强力卸载可以卸载顽固型文件。4、被暂用的文件也删除不了可以退出U盘重启电脑重新开机插入U盘进行删除。5、不能删除的...

directx官方下载win7(directx download)

点开始-----运行,输入dxdiag,回车后打开“DirectX诊断工具”窗口,进入“显示”选项卡,看一下是否启用了加速,没有的话,单击下面的“DirectX功能”项中的“启用”按钮,这样便打开了D...

u盘视频无法播放怎么办(u盘上视频没办法播放)

解决办法:1.检查U盘存储格式是否为FAT32,如果不是,请将其格式化为FAT32; 2.检查U盘中视频文件是否损坏,如果有损坏文件,请尝试重新复制一份; 3.检查U盘中存储...

笔记本电脑无法正常启动怎么修复
笔记本电脑无法正常启动怎么修复

1.可以解决。2.Windows未能启动可能是由于系统文件损坏、硬件故障或病毒感染等原因引起的。解决方法可以尝试使用Windows安全模式启动、修复启动、还原系统、重装系统等方法。3.如果以上方法都无法解决问题,可以考虑联系专业的电脑...

2025-11-16 04:03 off999

联想设置u盘为第一启动项(联想怎么设置u盘启动为第一启动项)

联想电脑设置u盘为第一启动项方法如下一、将电脑开机,开机瞬间按F2键进入bios设置界面二、在上面5个选项里找到boot选项,这里按键盘上左右键来移动三、这里利用键盘上下键选到USB选项,然后按F5/...

家用路由器哪个牌子最好信号最稳定
家用路由器哪个牌子最好信号最稳定

TP-LINK最好,信号最稳定。路由器是连接两个或多个网络的硬件设备,在网络间起网关的作用,是读取每一个数据包中的地址然后决定如何传送的专用智能性的网络设备。它能够理解不同的协议,例如某个局域网使用的以太网协议,因特网使用的TCP/IP协议...

2025-11-16 03:03 off999

安卓纯净版系统(安卓的纯净模式)

安卓系统有纯净模式的,安卓系统必须有纯净模式的,刷入纯净版系统可以去除一些预装的应用和系统自带软件,提高手机的运行速度和使用体验。但需要注意的是刷机有一定风险,请确保你已经备份好手机数据并了解安装风险...

deepin系统怎么安装软件(deepin操作系统怎么安装软件)

deepin是一个基于Linux的操作系统,它默认不支持APK应用。要在deepin上安装APK应用,需要先安装一个Android模拟器,例如Anbox,然后从GooglePlayStore或其他...

下载app安装包(下载app安装包损坏)
下载app安装包(下载app安装包损坏)

1,没有刷机过的,可以在手机里面,找到系统自带的文件管理-(如图),2,点开后,可以直接看到文件分类,找到,安装包,点开,(如下图)3,即可看到手机里面的未安装APP;操作方法01如果是直接在浏览器上下载的软件,那就直接点开浏览器,然后点击...

2025-11-16 01:51 off999

window7旗舰版密码忘记(win7密码忘记了怎么办旗舰版)

1、重启电脑按f8选择“带命令提示符的安全模式”,跳出“CommandPrompt”窗口。2、在窗口中输入“netuserasd/add”回车,再升级输入“netlocalgroupadmi...

windows7界面(windows7界面由哪几个部分组成)

您好!Windows7一般有两种界面。一种为Aero界面,一种为经典界面。Aero界面还包含三个小分类:性能最佳Aero,BasicAero,对比度Aero。性能最佳Aero是Windows7最...

wps截图快捷键(WPS截图快捷键是哪个)

在WPS中进行截屏,可以通过快捷键来实现。具体操作在按下“Alt+PrtSc”之后,就会将当前屏幕截图保存到剪贴板中。若需要将截图保存为图片文件,则在粘贴时选择“文件夹”而不是“粘贴”,再选定存储...

台式电脑最佳配置清单及价格
  • 台式电脑最佳配置清单及价格
  • 台式电脑最佳配置清单及价格
  • 台式电脑最佳配置清单及价格
  • 台式电脑最佳配置清单及价格
电脑主机自动关机是什么原因

  原因一、软件  1.病毒破坏,自从有了计算机以后不久,计算机病毒也应运而生。当网络成为当今社会的信息大动脉后,病毒的传播更加方便,所以也时不时的干扰和破坏我们的正常工作。比较典型的就是前一段时间对...

显示桌面快捷键(怎么设置桌面快捷图标)

电脑上显示桌面的快捷键如下:1,常用。同时按Win徽标键+D键(win键位于Ctrl与Alt之间像个飘起来的田字):按一次显示桌面,再同时按一次返回到窗口。2,同时按Win徽标键+M:原本含义是“...

取消回复欢迎 发表评论: