百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

决策树和随机森林的理论、实现和超参数调整

off999 2024-11-26 07:24 24 浏览 0 评论

#头条创作挑战赛#


在本文中,我们将详细介绍决策树和随机森林模型。此外,我们将展示决策树和随机森林的哪些超参数对它们的性能有重要影响,从而使我们能够在欠拟合和过拟合之间找到最佳方案。在了解了决策树和随机森林背后的理论之后。,我们将使用Scikit-Learn实现它们。

1. 决策树

决策树是预测建模机器学习的一种重要算法。经典的决策树算法已经存在了几十年,而像随机森林这样的现代变体是最强大的可用技术之一。

通常,这种算法被称为“决策树”,但在R等一些平台上,它们被称为CART。CART算法为bagged决策树、随机森林和boosting决策树等重要算法提供了基础。

与线性模型不同,决策树是非参数模型:它们不受数学决策函数的控制,也没有要优化的权重或截距。事实上,决策树将通过考虑特征来划分空间。

CART模型表示

CART模型的表示是二叉树。这是来自算法和数据结构的二叉树。每个根节点表示一个输入变量(x)和该变量上的一个拆分点(假设变量是数值型的)。

树的叶节点包含一个输出变量(y),用于进行预测。给定一个新的输入,通过从树的根节点开始计算特定的输入来遍历树。

决策树的一些优点是:

  • 易于理解和解释。树可以可视化。
  • 需要很少的数据准备。
  • 能够处理数字和分类数据。
  • 可以使用统计测试来验证模型。
  • 即使生成数据的真实模型在某种程度上违反了它的假设,也表现良好。

决策树的缺点包括:

  • 过度拟合。诸如剪枝、设置叶节点所需的最小样本数或设置树的最大深度等机制是避免此问题所必需的。
  • 决策树可能不稳定。可以在集成中使用决策树。
  • 不能保证返回全局最优决策树。可以在一个集成学习器中训练多棵树
  • 如果某些类别占主导地位,决策树学习器会创建有偏树。建议:在拟合之前平衡数据集

2. 随机森林

随机森林是最流行和最强大的机器学习算法之一。它是一种集成机器学习算法,称为Bootstrap Aggregation或bagging。

为了提高决策树的性能,我们可以使用许多具有随机特征样本的树。

3.python中的决策树和随机森林实现

我们将使用决策树和随机森林来预测您有价值的员工的流失(https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset)。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
sns.set_style("whitegrid")
plt.style.use("fivethirtyeight")

df = pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")

4. 数据处理

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split


df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis="columns", inplace=True)

categorical_col = []
for column in df.columns:
    if df[column].dtype == object and len(df[column].unique()) <= 50:
        categorical_col.append(column)
        
df['Attrition'] = df.Attrition.astype("category").cat.codes

categorical_col.remove('Attrition')

label = LabelEncoder()
for column in categorical_col:
    df[column] = label.fit_transform(df[column])

X = df.drop('Attrition', axis=1)
y = df.Attrition

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

5. 应用树和随机森林算法

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

def print_score(clf, X_train, y_train, X_test, y_test, train=True):
    if train:
        pred = clf.predict(X_train)
        print("Train Result:\n================================================")
        print(f"Accuracy Score: {accuracy_score(y_train, pred) * 100:.2f}%")
        print("_______________________________________________")
        print(f"Confusion Matrix: \n {confusion_matrix(y_train, pred)}\n")
        
    elif train==False:
        pred = clf.predict(X_test)
        print("Test Result:\n================================================")        
        print(f"Accuracy Score: {accuracy_score(y_test, pred) * 100:.2f}%")
        print("_______________________________________________")
        print(f"Confusion Matrix: \n {confusion_matrix(y_test, pred)}\n")

5.1 决策树分类器

决策树参数:

  • criterion: 衡量拆分质量。支持的标准是基尼杂质的“基尼”和信息增益的“熵”。
  • splitter:用于在每个节点处选择拆分的策略。支持的策略是“best”选择最佳拆分和“random”选择随机拆分。
  • max_depth:树的最大深度。如果为None,则展开节点,直到所有叶节点,或者直到所有叶包含的样本小于min_samples_split。
  • min_samples_split:拆分内部节点所需的最小样本数。
  • min_samples_leaf:叶节点上所需的最小样本数。
  • min_weight_fraction_leaf:叶节点上所需的总权重的最小加权分数。当没有提供sample_weight时,样本具有相等的权值。
  • max_features:寻找最佳拆分时要考虑的特征数量。
  • max_leaf_nodesmax_leaf_nodes:以最佳优先的方式使用max_leaf_nodes形成树。最佳节点定义为杂质的相对减少。如果为None,则有无限数量的叶节点。
  • min_impurity_decrease:如果该拆分导致杂质减少大于或等于该值,则该节点将被拆分。
  • min_impurity_split: 提前停止的阈值。如果一个节点的杂质高于阈值,则该节点将拆分,否则,它是一个叶子。
from sklearn.tree import DecisionTreeClassifier

tree_clf = DecisionTreeClassifier(random_state=42)
tree_clf.fit(X_train, y_train)

print_score(tree_clf, X_train, y_train, X_test, y_test, train=True)
print_score(tree_clf, X_train, y_train, X_test, y_test, train=False)

5.2决策树分类器超参数调优

超参数max_depth控制决策树的总体复杂性。这个超参数允许在欠拟合和过拟合决策树之间进行权衡。让我们为分类和回归构建一棵浅树,然后再构建一棵更深的树,以了解参数的影响。

超参数min_samples_leaf、min_samples_split、max_leaf_nodes或min_implitity_reduce允许在叶级或节点级应用约束。超参数min_samples_leaf是叶子允许有最少样本数,否则将不会搜索进一步的拆分。这些超参数可以作为max_depth超参数的补充方案。

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV

params = {
    "criterion":("gini", "entropy"), 
    "splitter":("best", "random"), 
    "max_depth":(list(range(1, 20))), 
    "min_samples_split":[2, 3, 4], 
    "min_samples_leaf":list(range(1, 20)), 
}

tree_clf = DecisionTreeClassifier(random_state=42)
tree_cv = GridSearchCV(tree_clf, params, scoring="accuracy", n_jobs=-1, verbose=1, cv=3)
tree_cv.fit(X_train, y_train)
best_params = tree_cv.best_params_
print(f"Best paramters: {best_params})")

tree_clf = DecisionTreeClassifier(**best_params)
tree_clf.fit(X_train, y_train)
print_score(tree_clf, X_train, y_train, X_test, y_test, train=True)
print_score(tree_clf, X_train, y_train, X_test, y_test, train=False)

5.3树的可视化

from IPython.display import Image
from six import StringIO
from sklearn.tree import export_graphviz
import pydot

features = list(df.columns)
features.remove("Attrition")
dot_data = StringIO()
export_graphviz(tree_clf, out_file=dot_data, feature_names=features, filled=True)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
Image(graph[0].create_png())


5.4随机森林

随机森林是一种元估计器,它将多个决策树分类器对数据集的不同子样本进行拟合,并使用均值来提高预测准确度和控制过拟合。

随机森林算法参数:

  • n_estimators: 树的数量。
  • criterion: 衡量拆分质量的函数。支持的标准是gini和信息增益的“熵”。
  • max_depth:树的最大深度。如果为None,则展开节点,直到所有叶子都是纯的,或者直到所有叶子包含的样本少于min_samples_split。
  • min_samples_split:拆分内部节点所需的最小样本数。
  • min_samples_leaf:叶节点所需的最小样本数。min_samples_leaf只有在左右分支中的每个分支中至少留下训练样本时,才会考虑任何深度的分割点。这可能具有平滑模型的效果,尤其是在回归中。
  • min_weight_fraction_leaf:需要在叶节点处的总权重(所有输入样本的)的最小加权分数。当未提供 sample_weight 时,样本具有相同的权重。
  • max_features:寻找最佳分割时要考虑的特征数量。
  • max_leaf_nodesmax_leaf_nodes:以最佳优先方式种植一棵树。最佳节点定义为杂质的相对减少。如果 None 则无限数量的叶节点。
  • min_impurity_decrease:如果该分裂导致杂质减少大于或等于该值,则该节点将被分裂。
  • min_impurity_split: 树提前停止的阈值。如果一个节点的杂质高于阈值,则该节点将分裂,否则,它是一个叶子。
  • bootstrap:构建树时是否使用bootstrap样本。如果为 False,则使用整个数据集来构建每棵树。
  • oob_score:是否使用out-of-bag样本来估计泛化准确度。
from sklearn.ensemble import RandomForestClassifier

rf_clf = RandomForestClassifier(n_estimators=100)
rf_clf.fit(X_train, y_train)

print_score(rf_clf, X_train, y_train, X_test, y_test, train=True)
print_score(rf_clf, X_train, y_train, X_test, y_test, train=False)

5.5随机森林超参数调优

调优随机森林的主要参数是n_estimators参数。一般来说,森林中的树越多,泛化性能越好,但它会减慢拟合和预测的时间。

我们还可以调优控制森林中每棵树深度的参数。有两个参数非常重要:max_depth和max_leaf_nodes。实际上,max_depth将强制具有更对称的树,而max_leaf_nodes会限制最大叶节点数量。

n_estimators = [100, 500, 1000, 1500]
max_features = ['auto', 'sqrt']
max_depth = [2, 3, 5]
max_depth.append(None)
min_samples_split = [2, 5, 10]
min_samples_leaf = [1, 2, 4, 10]
bootstrap = [True, False]

params_grid = {'n_estimators': n_estimators, 'max_features': max_features,
               'max_depth': max_depth, 'min_samples_split': min_samples_split,
               'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap}

rf_clf = RandomForestClassifier(random_state=42)

rf_cv = GridSearchCV(rf_clf, params_grid, scoring="f1", cv=3, verbose=2, n_jobs=-1)

rf_cv.fit(X_train, y_train)
best_params = rf_cv.best_params_
print(f"Best parameters: {best_params}")

rf_clf = RandomForestClassifier(**best_params)
rf_clf.fit(X_train, y_train)

print_score(rf_clf, X_train, y_train, X_test, y_test, train=True)
print_score(rf_clf, X_train, y_train, X_test, y_test, train=False)

最后

本文主要讲解了以下内容:

  • 决策树和随机森林算法以及每种算法的参数。
  • 如何调整决策树和随机森林的超参数。
  • 在训练之前需要平衡你的数据集。
  • 从每个类中抽取相同数量的样本。
  • 通过将每个类的样本权重(sample_weight)的和归一化为相同的值。

相关推荐

apisix动态修改路由的原理_动态路由协议rip的配置

ApacheAPISIX能够实现动态修改路由(DynamicRouting)的核心原理,是它将传统的静态Nginx配置彻底解耦,通过中心化配置存储(如etcd)+OpenRest...

使用 Docker 部署 OpenResty Manager 搭建可视化反向代理系统

在之前的文章中,xiaoz推荐过可视化Nginx反向代理工具NginxProxyManager,最近xiaoz还发现一款功能更加强大,界面更加漂亮的OpenRestyManager,完全可以替代...

OpenResty 入门指南:从基础到动态路由实战

一、引言1.1OpenResty简介OpenResty是一款基于Nginx的高性能Web平台,通过集成Lua脚本和丰富的模块,将Nginx从静态反向代理转变为可动态编程的应用平台...

OpenResty 的 Lua 动态能力_openresty 动态upstream

OpenResty的Lua动态能力是其最核心的优势,它将LuaJIT嵌入到Nginx的每一个请求处理阶段,使得开发者可以用Lua脚本动态控制请求的生命周期,而无需重新编译或rel...

LVS和Nginx_lvs和nginx的区别

LVS(LinuxVirtualServer)和Nginx都是常用的负载均衡解决方案,广泛应用于大型网站和分布式系统中,以提高系统的性能、可用性和可扩展性。一、基本概念1.LVS(Linux...

外网连接到内网服务器需要端口映射吗,如何操作?

外网访问内网服务器通常需要端口映射(或内网穿透),这是跨越公网与私网边界的关键技术。操作方式取决于网络环境,以下分场景详解。一、端口映射的核心原理内网服务器位于私有IP地址段(如192.168.x.x...

Nginx如何解决C10K问题(1万个并发连接)?

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。Nginx是大型架构的必备中间件,下面我就全面来详解NginxC10k问题@mikechen文章来源:mikec...

炸场!Spring Boot 9 大内置过滤器实战手册:从坑到神

炸场!SpringBoot9大内置过滤器实战手册:从坑到神在Java开发圈摸爬滚打十年,见过太多团队重复造轮子——明明SpringBoot自带的过滤器就能解决的问题,偏偏要手写几十...

WordPress和Typecho xmlrpc漏洞_wordpress主题漏洞

一般大家都关注WordPress,毕竟用户量巨大,而国内的Typecho作为轻量级的博客系统就关注的人并不多。Typecho有很多借鉴WordPress的,包括兼容的xmlrpc接口,而WordPre...

Linux Shell 入门教程(六):重定向、管道与命令替换

在前几篇中,我们学习了函数、流程控制等Shell编程的基础内容。现在我们来探索更高级的功能:如何控制数据流向、将命令链接在一起、让命令间通信变得可能。一、输入输出重定向(>、>>...

Nginx的location匹配规则,90%的人都没完全搞懂,一张图让你秒懂

刚配完nginx网站就崩了?运维和开发都头疼的location匹配规则优先级,弄错顺序直接导致500错误。核心在于nginx处理location时顺序严格:先精确匹配=,然后前缀匹配^~,接着按顺序正...

liunx服务器查看故障命令有那些?_linux查看服务器性能命令

在Linux服务器上排查故障时,需要使用一系列命令来检查系统状态、日志文件、资源利用情况以及网络状况。以下是常用的故障排查命令,按照不同场景分类说明。1.系统资源相关命令1.1查看CPU使...

服务器被入侵的常见迹象有哪些?_服务器入侵可以被完全操纵吗

服务器被入侵可能会导致数据泄露、服务异常或完全失控。及时发现入侵迹象能够帮助你尽早采取措施,减少损失。以下是服务器被入侵的常见迹象以及相关的分析与处理建议。1.服务器被入侵的常见迹象1.1系统性能...

前端错误可观测最佳实践_前端错误提示

场景解析对于前端项目,生产环境的代码通常经过压缩、混淆和打包处理,当代码在运行过程中产生错误时,通常难以还原原始代码从而定位问题,对于深度混淆尤其如此,因此Mozilla自2011年开始发起并...

8个能让你的Kubernetes集群“瞬间崩溃”的配置错误

错误一:livenessProbe探针“自杀式”配置——30秒内让Pod重启20次现象:Pod状态在Running→Terminating→CrashLoopBackOff之间循环,重启间隔仅...

取消回复欢迎 发表评论: