Python案例:一个房地产网站数据采集及简单可视化分析
off999 2024-12-16 15:20 22 浏览 0 评论
这次分享一个房地产网站数据采集及可视化分析的Python实际案例,应用效果还是有,步骤如下:
1、获取目标网站
2、分析网站,确定数据采集的方法
3、对采集的数据进行处理
4、最后可视化
先看看最终效果:
首先获取目标网站,可以发现获取的数据信息都在网页上面,所以可以直接使用xpath标签定位获取网页上的数据,而不用担心动态网页的数据会出现变化:
然后获取各个采集字段的具体xpath,包括房源信息、房价、地区、建面(面积)等字段的xpa,部分代码如下:
fymc=n.xpath('./div/div[1]/a/text()')[0]#房源名称
fj=n.xpath('./div/div[6]/div/span[1]/text()')[0]#房价
diqu=n.xpath('./div/div[2]/span[1]/text()')[0]#地区
mj=n.xpath('./div/div[3]/span/text()')[0]然后我们要爬取页数要设置,可以看到页数链接明显出现变化,而且还是规律性的,所以可以构造一个循环采集指定页数的信息(也就是翻页采集),部分代码如下:
for i in range(1,6):
url='https://nn.fang.lianjia.com/loupan/pg'+str(i)
#print(url)翻页采集搞定了,接下来就是数据处理,先判断采集的数据有没有空值或者缺失值,就必须使用numpy和pandas这两个模块进行数据处理,部分代码如下:
data=pd.read_csv(r'C:/Users/Administrator/Desktop/链家数据.csv',encoding='gbk')
#data.describe()#做描述性分析,判断有没有空值或者缺失值然后查看采集的数据发现,建面面积这个字段既有中文又有数字和特殊符号,我们要对这个字段进行拆分,拆分为最大面积和最小面积,代码如下:
data['最小面积']=data['面积'].str.split(expand=True)[1].str.split('-',expand=True)[0]
data['最大面积']=data['面积'].str.split(expand=True)[1].str.split('-',expand=True)[1].str.split('㎡',expand=True)[0]
data=data.drop('面积',axis=1)处理完采集的数据,接下来就是对数据进行可视化,可视化就用到matplotlib这个模块,我们用了三个图去可视化数据,包括折线图、饼图、条形图,部分代码如下:
#制作可视化图表
plt.figure(figsize=(10,8))
plt.suptitle("南宁房价可视化分析",fontsize=20)
plt.subplot(2,2,1)
#不同地区的房源数量--饼图
plt.title('不同地区的房源数量占比--饼图')
explode=[0,0,0,0,0.2,0]
plt.pie(x=data.地区.value_counts(),labels=data.地区.value_counts().index,
explode=explode,autopct='%.3f%%')
plt.subplot(2,2,2)
plt.title('不同地区的房源数量--条形图')
plt.ylim(0,20)
x=data.地区.value_counts().index
y=data.地区.value_counts()
plt.bar(x=x,height=y,width=0.5)
for a,b in zip(x,y):
plt.text(a,b+0.2,str(b),ha='center',va='bottom',fontsize=10.5,color='green')
plt.subplot(2,1,2)
plt.title('不同地区平均房价——折线图')
plt.ylim(0,30000)
qingxiu=int(data[data['地区']=="青秀区"].房价.mean())
xixiangtang=int(data[data['地区']=="西乡塘区"].房价.mean())
xingning=int(data[data['地区']=="兴宁区"].房价.mean())
liangqing=int(data[data['地区']=="良庆区"].房价.mean())
yongning=int(data[data['地区']=="邕宁区"].房价.mean())
dq=['青秀区','西乡塘区','兴宁区','良庆区','邕宁区']
mean_fj=[qingxiu,xixiangtang,xingning,liangqing,yongning]
#折线图#
plt.plot(dq,mean_fj,label='不同地区平均房价')
for a,b in zip(dq,mean_fj):
plt.text(a,b+0.2,str(b),ha='center',va='top',fontsize=10.5)
plt.legend(loc=1,fontsize=13)
plt.show()最后不多说了,附上完整代码:
import requests
from lxml import etree
import csv
import pandas as pd
import matplotlib.pyplot as plt
from pylab import mpl
import time
with open('C:/Users/Administrator/Desktop/链家数据.csv','w',encoding='gbk') as f:
f.write('房源名称,房价,地区,面积\n')
f.close()
for i in range(1,6):
url='https://nn.fang.lianjia.com/loupan/pg'+str(i)
#print(url)
headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36'
}
r=requests.get(url,headers=headers).content
b=etree.HTML(r)
c=b.xpath('/html/body/div[3]/ul[2]/li')
try:
for n in c:
fymc=n.xpath('./div/div[1]/a/text()')[0]#房源名称
fj=n.xpath('./div/div[6]/div/span[1]/text()')[0]#房价
diqu=n.xpath('./div/div[2]/span[1]/text()')[0]#地区
mj=n.xpath('./div/div[3]/span/text()')[0]
with open('C:/Users/Administrator/Desktop/链家数据.csv','a',encoding='gbk') as f1:
f1.write('{},{},{},{}\n'.format(fymc,fj,diqu,mj))
print("数据爬取成功!")
except:
pass
time.sleep(20)
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False
data=pd.read_csv(r'C:/Users/Administrator/Desktop/链家数据.csv',encoding='gbk')
#数据处理,拆分面积字段为两列数据,最小面积和最大面积
#data.describe()
data['最小面积']=data['面积'].str.split(expand=True)[1].str.split('-',expand=True)[0]
data['最大面积']=data['面积'].str.split(expand=True)[1].str.split('-',expand=True)[1].str.split('㎡',expand=True)[0]
data=data.drop('面积',axis=1)
#制作可视化图表
plt.figure(figsize=(10,8))
plt.suptitle("南宁房价可视化分析",fontsize=20)
plt.subplot(2,2,1)
#不同地区的房源数量--饼图
plt.title('不同地区的房源数量占比--饼图')
explode=[0,0,0,0,0.2,0]
plt.pie(x=data.地区.value_counts(),labels=data.地区.value_counts().index,
explode=explode,autopct='%.3f%%')
plt.subplot(2,2,2)
plt.title('不同地区的房源数量--条形图')
plt.ylim(0,20)
x=data.地区.value_counts().index
y=data.地区.value_counts()
plt.bar(x=x,height=y,width=0.5)
for a,b in zip(x,y):
plt.text(a,b+0.2,str(b),ha='center',va='bottom',fontsize=10.5,color='green')
plt.subplot(2,1,2)
plt.title('不同地区平均房价——折线图')
plt.ylim(0,30000)
qingxiu=int(data[data['地区']=="青秀区"].房价.mean())
xixiangtang=int(data[data['地区']=="西乡塘区"].房价.mean())
xingning=int(data[data['地区']=="兴宁区"].房价.mean())
liangqing=int(data[data['地区']=="良庆区"].房价.mean())
yongning=int(data[data['地区']=="邕宁区"].房价.mean())
dq=['青秀区','西乡塘区','兴宁区','良庆区','邕宁区']
mean_fj=[qingxiu,xixiangtang,xingning,liangqing,yongning]
#折线图#
plt.plot(dq,mean_fj,label='不同地区平均房价')
for a,b in zip(dq,mean_fj):
plt.text(a,b+0.2,str(b),ha='center',va='top',fontsize=10.5)
plt.legend(loc=1,fontsize=13)
plt.show()
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
