百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

使用Python抓取同花顺资金流数据 python 从同花顺获取数据导出

off999 2024-12-16 15:20 11 浏览 0 评论

今天我们通过一个例子来介绍python爬取数据的一般步骤,用到的工具包括python的经典模块requests和BeautifulSoup,另外结合刚学习的任务流工具TaskFlow来完成代码开发。

我们先来看一下要爬取的数据,网址是http://data.10jqka.com.cn/funds/gnzjl/,通过chrome的开发者工具分析我们可以比较容易找到后台数据加载网址为

http://data.10jqka.com.cn/funds/gnzjl/field/tradezdf/order/desc/page/{page_num}/ajax/1/free/1/

其中page_num的位置为要查询第几页的数据,在网页上看到概念一共有6页数据,所以page_num取值为1-6

这里有个小技巧,可以先点击图示1左上角的清空按钮,把已经加载的网址先清理掉,然后在原始网页上点第二页,就能看到图片左下角新加载的网址,点开右边“Preview” 看到资金流数据相关的内容,就能确定这个网址是用来加载数据的。

在chrome浏览器中输入 http://data.10jqka.com.cn/funds/gnzjl/field/tradezdf/order/desc/page/1/ajax/1/free/1/,并打开chrome开发者工具,在网页源码中找到数据所在table标签为

<table class="m-table J-ajax-table">
    ...
</table>

抓取数据的完整源码如下

import time

import requests
from bs4 import BeautifulSoup
from taskflow import engines
from taskflow.patterns import linear_flow
from taskflow.task import Task

REQUEST_HEADER = {
    'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.97 Safari/537.36'}


class MoneyFlowDownload(Task):
    """
    下载资金流数据
    数据源地址:http://data.10jqka.com.cn/funds/gnzjl/

    """
    BASE_URl = {
        "concept": 'http://data.10jqka.com.cn/funds/gnzjl/field/tradezdf/order/desc/page/%s/ajax/1/free/1/',
    }

    def execute(self, bizdate, *args, **kwargs):

        for name, base_url in self.BASE_URl.items():
            # 爬取数据的存储路径
            dt_path = '/data/%s_%s.csv' % (bizdate, name)

            with open(dt_path, "a+") as f:
                # 记录数据文件的当前位置
                pos = f.tell()
                f.seek(0)
                lines = f.readlines()
                # 读取文件中的全部数据并将第一列存储下来作为去重依据,防止爬虫意外中断后重启程序时,重复写入相同
                crawled_list = list(map(lambda line: line.split(",")[0], lines))
                f.seek(pos)
                # 循环500次,从第一页开始爬取数据,当页面没有数据时终端退出循环
                for i in range(1, 500):
                    print("start crawl %s, %s" % (name, base_url % i))
                    web_source = requests.get(base_url % i, headers=REQUEST_HEADER)
                    soup = BeautifulSoup(web_source.content.decode("gbk"), 'lxml')
                    table = soup.select('.J-ajax-table')[0]
                    tbody = table.select('tbody tr')
                    # 当tbody为空时,则说明当前页已经没有数据了,此时终止循环
                    if len(tbody) == 0:
                        break
                    for tr in tbody:
                        fields = tr.select('td')
                        # 将每行记录第一列去掉,第一列为序号,没有存储必要
                        record = [field.text.strip() for field in fields[1:]]
                        # 如果记录还没有写入文件中,则执行写入操作,否则跳过这行写入
                        if record[0] not in crawled_list:
                            f.writelines([','.join(record) + '\n'])
                    # 同花顺网站有反爬虫的机制,爬取速度过快很可能被封
                    time.sleep(1)


if __name__ == '__main__':
    bizdate = '20200214'
    tasks = [
        MoneyFlowDownload('moneyflow data download')
    ]
    flow = linear_flow.Flow('ths data download').add(*tasks)
    e = engines.load(flow, store={'bizdate': bizdate})
    e.run()

执行程序后,在dt_path位置已经存储了概念的资金流数据,文件名为20200214_concept.csv,内容大致如下:

钛白粉,1008.88,6.29%,7.68,6.21,1.47,7,金浦钛业,10.04%,2.96
磷化工,916.833,2.42%,37.53,34.78,2.75,28,六国化工,9.97%,4.08
光刻胶,1435.68,2.40%,43.51,44.31,-0.80,20,晶瑞股份,10.01%,42.99

此时就完成了同花顺概念分类的资金流数据的爬取,之后可以每天定时启动任务抓取数据进行分析。

相关推荐

独家 | 5 个Python高级特性让你在不知不觉中成为Python高手

你已经使用Python编程了一段时间,编写脚本并解决各种问题。是你的水平出色吗?你可能只是在不知不觉中利用了Python的高级特性。从闭包(closure)到上下文管理器(contextmana...

Python装饰器

Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...

中高阶Python常规用法--上下文管理器

Python以简单性和通用性著称,是一种深受全球开发人员喜爱的编程语言。它提供了大量的特性和功能,使编码成为一种愉快的体验。在这些功能中,一个经常被新手忽视的强大工具是上下文管理器。上下文管理器是高...

Python小案例67- 装饰器

Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...

python常用的语法糖

概念Python的语法糖(SyntacticSugar)是指那些让代码更简洁、更易读的语法特性,它们本质上并不会增加新功能,但能让开发者更高效地编写代码。推导式写法推导式是Python最经典的...

python - 常用的装饰器 decorator 有哪些?

python编程中使用装饰器(decorator)工具,可以使代码更简洁清晰,提高代码的重用性,还可以为代码维护提供方便。对于python初学者来说,根据装饰器(decorator)的字面意思并不...

python数据缓存怎么搞 ?推荐一个三方包供你参考,非常简单好用。

1.数据缓存说明数据缓存可以说也是项目开发中比不可少的一个工具,像我们测试的系统中,你都会见到像Redis一样的数据缓存库。使用缓存数据库的好处不言而喻,那就是效率高,简单数据直接放在缓存中...

用于时间序列数据的Graphite监视工具

结合第三方工具,Graphite为IT性能监控提供了许多好处。本文介绍其核心组件,包括Carbon、Whisper以及安装的基本准则。Graphite监视工具可实时或按需,大规模地绘制来自多个来源的时...

Python3+pygame实现的坦克大战

一、显示效果二、代码1.说明几乎所有pygame游戏,基本都遵循一定的开发流程,大体如下:初始化pygame创建窗口while循环检测以及处理事件(鼠标点击、按键等)更新UI界面2.代码创建一个m...

Python之鸭子类型:一次搞懂with与上下文装饰器

引言在鸭子类型的理念的基础之上,从关注类型,转变到关注特性和行为。结合Python中的魔法函数的体系,我们可以将自定义的类型,像内置类型一样被使用。今天这篇文章中,接着该话题,继续聊一下with语法块...

Python必会的50个代码操作

学习Python时,掌握一些常用的程序操作非常重要。以下是50个Python必会的程序操作,主要包括基础语法、数据结构、函数和文件操作等。1.HelloWorldprint("Hello,...

一文掌握Python 中的同步和异步

同步代码(Sync)同步就像在一个流水线上工作,每个任务都等待前一个任务完成。示例:机器A切割钢板→完成后,机器B钻孔→完成后,机器C上色。在Python中,同步代码看起来像这样:im...

python 标注模块timeit: 测试函数的运行时间

在Python中,可以使用内置的timeit模块来测试函数的运行时间。timeit模块提供了一个简单的接口来测量小段代码的执行时间。以下是使用timeit测试函数运行时间的一般步骤:导入...

Python带你找回童年的万花尺

还记得小时候的万花尺吧?这么画:一点也不费脑筋,就可以出来这么多丰富多彩的复杂几何图形。具体而言,可以用万花尺玩具(如图2-1所示)来绘制数学曲线。这种玩具由两个不同尺寸的塑料齿轮组成,一大一小。小的...

Python 时间模块深度解析:从基础到高级的全面指南

直接上干货一、时间模块核心类介绍序号类名说明1datetime.datetime表示一个具体的日期和时间,结合了日期和时间的信息。2datetime.date表示一个具体的日期。3datetime.t...

取消回复欢迎 发表评论: