百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

免Python也能网页抓取:用AI自动完成 HTML 解析和数据提取

off999 2024-12-16 15:21 12 浏览 0 评论

想象一下这个工具,它可以简化您的网页抓取任务,使 HTML 解析和数据提取不仅易于访问,而且非常简单。不再需要处理复杂的代码,不再需要理清错综复杂的 HTML 字符串。这听起来好得令人难以置信吗?事实并非如此,这要归功于 OpenAI 最新的游戏规则改变者,即其非凡的 AI 模型 ChatGPT 中名为代码解释器的创新功能。

没错,已经令人印象深刻的 ChatGPT 现在又推出了一项新功能,这必将使您作为数据爱好者的生活变得更加顺利。您只需右键单击将网站保存为 HTML,通过拖动上传该 HTML 文件,然后要求代码解释器解析它并为您完成繁重的工作。哦,我有没有提到它集成了 BeautifulSoup 包?伙计们,我们在这里谈论的是更高水平的简单性和效率!

因此,如果您准备好将您的网络抓取技能提升到新的高度,请加入我的chatGPT自动化小组,将通过 ChatGPT 的代码解释器深入研究 HTML 解析和数据提取的奇迹。

现在开始吧!

代码解释器的实际应用

让我们看看代码解释器的实际应用。首先,您需要确保为 ChatGPT 中的新 GPT-4 聊天窗口激活代码解释器:

接下来,使用提示输入字段中的上传功能上传您要从中提取数据的 html 文件:

现在输入您的提示文本,让chatGPT来完成这个任务。

点击提交,让 ChatGPT 和 Code Interpreter 来解决这个任务。您将收到的第一个回复如下:

在这里您可以看到 Code Interpreter 使用 Python 脚本(利用网络抓取库 Beautiful Soup)从 HTML 文件中提取请求的数据。

接下来 Code Interpreter 正在生成生成显示提取数据的 Markdown 表所需的源代码:

执行代码后,ChatGPT 会为您提供前 5 个数据集的示例 Markdown 输出:

以下是chatGPT的代码编写器生成的完整代码:

from bs4 import BeautifulSoup

# Load the HTML file
with open("/mnt/data/answer.html", "r") as f:
    content = f.read()

# Create a BeautifulSoup object
soup = BeautifulSoup(content, 'html.parser')

# Print the first few lines of the parsed HTML content
print(str(soup.prettify())[:1000])
# Find all tables in the HTML
tables = soup.find_all('table')

# Check how many tables are found
len(tables)
import pandas as pd

# Function to parse a HTML table and convert it into a Pandas DataFrame
def html_table_to_df(table):
    # Find all rows in the table
    rows = table.find_all('tr')
    
    # Prepare a list to store the rows data
    data = []
    
    for row in rows:
        # Find all columns in the row
        cols = row.find_all('td')
        
        # Get the text from each column
        cols_text = [col.get_text(strip=True) for col in cols]
        
        # Add the columns data to the rows data list
        data.append(cols_text)
    
    # Convert the list of rows data into a Pandas DataFrame and return it
    return pd.DataFrame(data)

# Convert the first (and only) table into a DataFrame
df = html_table_to_df(tables[0])

# Display the first few rows of the DataFrame
df.head()

结论

亲爱的数据爱好者,我们已经得到了它!全面了解 ChatGPT 的新功能“代码解释器”如何大大简化您的网页抓取任务。HTML 解析和数据提取从未如此简单。手工解析复杂代码或错综复杂的嵌套 HTML 结构的日子已经一去不复返了。现在,您所需要做的就是将网页保存为 HTML,上传,然后让 Code Interpreter 发挥其魔力。

请记住,此功能的美妙之处不仅在于其效率,还在于其所拥有的潜力。通过集成 BeautifulSoup,您进行实体提取和数据解析的机会几乎是无限的。无论您是刚刚涉足网络抓取领域,还是经验丰富的数据管理员,Code Interpreter 都是数据提取工具箱中的宝贵工具。

相关推荐

独家 | 5 个Python高级特性让你在不知不觉中成为Python高手

你已经使用Python编程了一段时间,编写脚本并解决各种问题。是你的水平出色吗?你可能只是在不知不觉中利用了Python的高级特性。从闭包(closure)到上下文管理器(contextmana...

Python装饰器

Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...

中高阶Python常规用法--上下文管理器

Python以简单性和通用性著称,是一种深受全球开发人员喜爱的编程语言。它提供了大量的特性和功能,使编码成为一种愉快的体验。在这些功能中,一个经常被新手忽视的强大工具是上下文管理器。上下文管理器是高...

Python小案例67- 装饰器

Python装饰器是一种用于修改函数或类的行为的特殊语法。它们允许在不修改原始代码的情况下,通过将函数或类作为参数传递给另一个函数来添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返...

python常用的语法糖

概念Python的语法糖(SyntacticSugar)是指那些让代码更简洁、更易读的语法特性,它们本质上并不会增加新功能,但能让开发者更高效地编写代码。推导式写法推导式是Python最经典的...

python - 常用的装饰器 decorator 有哪些?

python编程中使用装饰器(decorator)工具,可以使代码更简洁清晰,提高代码的重用性,还可以为代码维护提供方便。对于python初学者来说,根据装饰器(decorator)的字面意思并不...

python数据缓存怎么搞 ?推荐一个三方包供你参考,非常简单好用。

1.数据缓存说明数据缓存可以说也是项目开发中比不可少的一个工具,像我们测试的系统中,你都会见到像Redis一样的数据缓存库。使用缓存数据库的好处不言而喻,那就是效率高,简单数据直接放在缓存中...

用于时间序列数据的Graphite监视工具

结合第三方工具,Graphite为IT性能监控提供了许多好处。本文介绍其核心组件,包括Carbon、Whisper以及安装的基本准则。Graphite监视工具可实时或按需,大规模地绘制来自多个来源的时...

Python3+pygame实现的坦克大战

一、显示效果二、代码1.说明几乎所有pygame游戏,基本都遵循一定的开发流程,大体如下:初始化pygame创建窗口while循环检测以及处理事件(鼠标点击、按键等)更新UI界面2.代码创建一个m...

Python之鸭子类型:一次搞懂with与上下文装饰器

引言在鸭子类型的理念的基础之上,从关注类型,转变到关注特性和行为。结合Python中的魔法函数的体系,我们可以将自定义的类型,像内置类型一样被使用。今天这篇文章中,接着该话题,继续聊一下with语法块...

Python必会的50个代码操作

学习Python时,掌握一些常用的程序操作非常重要。以下是50个Python必会的程序操作,主要包括基础语法、数据结构、函数和文件操作等。1.HelloWorldprint("Hello,...

一文掌握Python 中的同步和异步

同步代码(Sync)同步就像在一个流水线上工作,每个任务都等待前一个任务完成。示例:机器A切割钢板→完成后,机器B钻孔→完成后,机器C上色。在Python中,同步代码看起来像这样:im...

python 标注模块timeit: 测试函数的运行时间

在Python中,可以使用内置的timeit模块来测试函数的运行时间。timeit模块提供了一个简单的接口来测量小段代码的执行时间。以下是使用timeit测试函数运行时间的一般步骤:导入...

Python带你找回童年的万花尺

还记得小时候的万花尺吧?这么画:一点也不费脑筋,就可以出来这么多丰富多彩的复杂几何图形。具体而言,可以用万花尺玩具(如图2-1所示)来绘制数学曲线。这种玩具由两个不同尺寸的塑料齿轮组成,一大一小。小的...

Python 时间模块深度解析:从基础到高级的全面指南

直接上干货一、时间模块核心类介绍序号类名说明1datetime.datetime表示一个具体的日期和时间,结合了日期和时间的信息。2datetime.date表示一个具体的日期。3datetime.t...

取消回复欢迎 发表评论: