百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

python数据分析:详解数据框的合并

off999 2024-12-17 15:42 28 浏览 0 评论

不知道大家有没有分析过Kaggle的数据或者参加过Kaggle的挑战,里面的数据都分布在几个不同的数据集中,合并数据在所难免。今天给大家详细总结一波pandas中数据框合并和连接的方法。建议收藏,哈哈。

生成练习用的数据框

首先我们先用如下代码生成3个数据框,作为演示讲解之用。

df1 =pd.DataFrame({
        'id': ['1', '2', '3', '4', '5'],
        'Feature1': ['A', 'C', 'E', 'G', 'I'],
        'Feature2': ['B', 'D', 'F', 'H', 'J']}) 
df2 =pd.DataFrame({
        'id': ['1', '2', '6', '7', '8'],
        'Feature1': ['K', 'M', 'O', 'Q', 'S'],
        'Feature2': ['L', 'N', 'P', 'R', 'T']})
df3 = pd.DataFrame({
        'id': ['1', '2', '3', '4', '5', '7', '8', '9', '10', '11'],
        'Feature3': [12, 13, 14, 15, 16, 17, 15, 12, 13, 23]})

得到3个数据框,如下:



连接数据框Concatenate DataFrames

如果只是简单的连接两个数据框的行的话,直接调用concat()方法即可

df_row = pd.concat([df1, df2])

df_row



可以看到,数据框df1和df2就以行连接在一起了,但是你注意到没,此时数据框的索引有问题,我们想要的索引应该自动给我们填好才对,这个时候我们需要将ignore_index参数设置为True。

df_row = pd.concat([df1, df2], ignore_index=True)

这个时候索引就正确了。

有时候,你虽然连接了2个数据框,但是你还是想知道新数据框的数据分别来自哪个数据框,这个时候调用keys参数就可以,例如,我们在上面的例子中将来自df1的数据和df2的数据分别加上标签x,y。

df_keys = pd.concat([df1,df2], keys=['x', 'y'])

df_keys


可以看到,新数据框中哪些数据来自于哪个数据框一目了然。

同时,给新的数据框加上标签也有助于我们在新数据中切片出旧的数据框,例如

df_keys.loc['y']


通过以上代码,很容易在新数据框中切片出了df2。

在连接数据框时还有一个技巧,就是将数据框以字典值的形式传递给 concat(),可以在连接的新数据框中自动加上标签,这个标签就是字典的键。看下例:

df_piece = pd.concat({'第一个框':df1,'第二个框':df2})

df_piece


有没有很好使?

concat()函数也可以横向连接数据框,只需要将axis设置为1即可

df_col = pd.concat([df1,df2], axis=1)

df_col


可以看到这个就是横向连接。

合并数据框Merge DataFrames

我们看一下如何将df_row(由df1和df2连接后得到,见之前的例子)和df3以共同的id为基础合并起来。

df_merge_col = pd.merge(df_row, df3, on='id')

df_merge_col


此时,我们注意到id等于1的行出现了2次,是因为在df_row中是有2个id等于1的,而在df3中id等于1只有一次,所以合并后的feature3都是12。

还有一种情况是你要合并的2个数据框没有一样名字的列,需要你指定,这个时候就要用到left_on,right_on参数了。

df_merge_difkey = pd.merge(df_row, df3, left_on='id', right_on='id')

df_merge_difkey


此例中我们左右数据框都指定以id为基础进行合并。

还有一种情况是,你想给原先的数据框加一行新数据,看下例:

add_row = pd.Series(['10', 'X1', 'X2', 'X3'],
                    index=['id','Feature1', 'Feature2', 'Feature3'])

df_add_row = df_merge_col.append(add_row, ignore_index=True)

df_add_row

可以看到,通过append可以给一个数据框加上一个新的series。

不同的合并逻辑Outer,Inner,Right,Left与index

Outer合并会将两个数据库的所有数据都合并,相当于取原来数据库的并集形成一个新的数据库

df_outer = pd.merge(df1, df2, on='id', how='outer')

df_outer


可以看到,这种合并方法,生成的新数据集中会有很多NaN的值,还有,需要注意的是这种方法会自动将相同列名加上后缀,而且这个后缀是可以改的,看下例:

df_suffix = pd.merge(df1, df2, left_on='id',right_on='id',how='outer',suffixes=('_left','_right'))

df_suffix


可以看到suffixes参数可以修改后缀。

Inner合并生成的新数据集中只会有原来2个数据集中都有的数据,相当于取了两个数据框的交集。

df_inner = pd.merge(df1, df2, on='id', how='inner')

df_inner


相应的,Right,和Left就是分别以第二个和第一个数据框中的变量为基准进行数据框的合并,大家也可以试试。有时候,我们会根据2个数据框的index来合并,此时,只需要将right_index,left_index两个参数设置为True即可。看下面例子:

df_index = pd.merge(df1, df2, right_index=True, left_index=True)

df_index


结论

好了,今天给大家介绍了concat() 和 merge()合并数据框的用法,希望对大家有帮助。感谢大家耐心看完。发表这些东西的主要目的就是督促自己,希望大家关注评论指出不足,一起进步。内容我都会写的很细,用到的数据集也会在原文中给出链接,你只要按照文章中的代码自己也可以做出一样的结果,一个目的就是零基础也能懂,因为自己就是什么基础没有从零学Python的,加油。

(站外链接发不了,请关注后私信回复“数据链接”获取本头条号所有使用数据)

往期精彩:

python数据分析:缺失数据的处理

python数据分析:离群值的检测和处理

python应用:如何用python提取pdf文件中的文字

相关推荐

在NAS实现直链访问_如何访问nas存储数据

平常在使用IPTV或者TVBOX时,经常自己会自定义一些源。如何直链的方式引用这些自定义的源呢?本人基于armbian和CasaOS来创作。使用标准的Web服务器(如Nginx或Apache...

PHP开发者必备的Linux权限核心指南

本文旨在帮助PHP开发者彻底理解并解决在Linux服务器上部署应用时遇到的权限问题(如Permissiondenied)。核心在于理解“哪个用户(进程)在访问哪个文件(目录)”。一、核心...

【Linux高手必修课】吃透sed命令!文本手术刀让你秒变运维大神!

为什么说sed是Linux运维的"核武器"?想象你有10万个配置文件需要批量修改?传统方式要写10万行脚本?sed一个命令就能搞定!这正是运维工程师的"暴力美学"时...

「实战」docker-compose 编排 多个docker 组成一个集群并做负载

本文目标docker-compose,对springboot应用进行一个集群(2个docker,多个类似,只要在docker-compose.yml再加boot应用的服务即可)发布的过程架构...

企业安全访问网关:ZeroNews反向代理

“我们需要让外包团队访问测试环境,但不想让他们看到我们的财务系统。”“审计要求我们必须记录所有第三方对内部系统的访问,现在的VPN日志一团糟。”“每次有新员工入职或合作伙伴接入,IT部门都要花半天时间...

反向代理以及其使用场景_反向代理实现过程

一、反向代理概念反向代理(ReverseProxy)是一种服务器配置,它将客户端的请求转发给内部的另一台或多台服务器处理,然后将响应返回给客户端。与正向代理(ForwardProxy)不同,正向代...

Nginx反向代理有多牛?一篇文章带你彻底搞懂!

你以为Nginx只是个简单的Web服务器?那可就大错特错了!这个看似普通的开源软件,实际上隐藏着惊人的能力。今天我们就来揭开它最强大的功能之一——反向代理的神秘面纱。反向代理到底是什么鬼?想象一下你...

Nginx反向代理最全详解(原理+应用+案例)

Nginx反向代理在大型网站有非常广泛的使用,下面我就重点来详解Nginx反向代理@mikechen文章来源:mikechen.cc正向代理要理解清楚反向代理,首先:你需要搞懂什么是正向代理。正向代理...

centos 生产环境安装 nginx,包含各种模块http3

企业级生产环境Nginx全模块构建的大部分功能,包括HTTP/2、HTTP/3、流媒体、SSL、缓存清理、负载均衡、DAV扩展、替换过滤、静态压缩等。下面我给出一个完整的生产环境安装流程(C...

Nginx的负载均衡方式有哪些?_nginx负载均衡机制

1.轮询(默认)2.加权轮询3.ip_hash4.least_conn5.fair(最小响应时间)--第三方6.url_hash--第三方...

Nginx百万并发优化:如何提升100倍性能!

关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。Nginx是大型架构的核心,下面我重点详解Nginx百万并发优化@mikechen文章来源:mikechen....

在 Red Hat Linux 上搭建高可用 Nginx + Keepalived 负载均衡集群

一、前言在现代生产环境中,负载均衡是确保系统高可用性和可扩展性的核心技术。Nginx作为轻量级高性能Web服务器,与Keepalived结合,可轻松实现高可用负载均衡集群(HA+LB...

云原生(十五) | Kubernetes 篇之深入了解 Pod

深入了解Pod一、什么是PodPod是一组(一个或多个)容器(docker容器)的集合(就像在豌豆荚中);这些容器共享存储、网络、以及怎样运行这些容器的声明。我们一般不直接创建Pod,而是...

云原生(十七) | Kubernetes 篇之深入了解 Deployment

深入了解Deployment一、什么是Deployment一个Deployment为Pods和ReplicaSets提供声明式的更新能力。你负责描述Deployment中的目标状...

深入理解令牌桶算法:实现分布式系统高效限流的秘籍

在高并发系统中,“限流”是保障服务稳定的核心手段——当请求量超过系统承载能力时,合理的限流策略能避免服务过载崩溃。令牌桶算法(TokenBucket)作为最经典的限流算法之一,既能控制请求的平...

取消回复欢迎 发表评论: