百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

23-Python-第三方库Json(python第三方库代码大全)

off999 2025-05-09 21:00 5 浏览 0 评论

1-json库的使用

`json`库是Python标准库的一部分,用于处理JSON数据。它提供了`loads`、`dumps`等方法。

安装三方库

pip install json

1-1-将JSON字符串解析为Python对象

1-1-1-语法

将JSON字符串解析为Python对象,然后可以像访问普通Python字典一样访问解析后的数据。

json.loads(json_str)

1-1-2-例子

import json

# 定义一个JSON字符串
json_str = '{"name": "张三", "age": 30, "city": "北京"}'

# 将JSON字符串解析为Python对象
data = json.loads(json_str)

# 访问解析后的数据
print(data['name'])
print(data['age'])
print(data['city'])

1-1-3-输出结果

1-2-将Python对象转换为JSON字符串

1-2-1-语法

`json.dumps`方法将Python字典转换为JSON字符串

json.dumps(pythonObj)

1-2-2-例子

import json

# 定义一个Python字典
data = {
    'name': 'John',
    'age': 30,
    'city': 'New York'
}

# 将Python对象转换为JSON字符串
json_str = json.dumps(data)

# 打印JSON字符串
print(json_str)

1-2-3-输出结果

1-3-例子

实现从json文件中读取不同省份的人口总数并显示成柱状图

1-3-1-例子01

population.json

[
    {"province": "广东省", "population": 126012510},
    {"province": "山东省", "population": 101527453},
    {"province": "河南省", "population": 98830000},
    {"province": "四川省", "population": 83674866},
    {"province": "江苏省", "population": 85054000},
    {"province": "河北省", "population": 74610235},
    {"province": "湖南省", "population": 66444864},
    {"province": "浙江省", "population": 65400000},
    {"province": "安徽省", "population": 61130000},
    {"province": "湖北省", "population": 58300000}
]

province_population_chart.py

用于封装json文件

import json
from jinja2 import Environment, FileSystemLoader
from collections import defaultdict


def read_province_population_from_json(json_file_path):
    province_population = defaultdict(int)
    try:
        with open(json_file_path, 'r', encoding='utf-8') as file:
            data = json.load(file)
            for item in data:
                province = item.get('province')
                population = item.get('population', 0)
                if province:
                    province_population[province] += population
        return province_population
    except FileNotFoundError:
        print(f"错误:未找到文件 {json_file_path}")
    except json.JSONDecodeError:
        print(f"错误:无法解析 {json_file_path} 为有效的 JSON")
    return province_population


def generate_bar_chart_html(province_population, html_output_path):
    env = Environment(loader=FileSystemLoader('.'))
    template = env.get_template('bar_chart_template.html')

    provinces = list(province_population.keys())
    populations = list(province_population.values())

    html_content = template.render(provinces=provinces, populations=populations)
    try:
        with open(html_output_path, 'w', encoding='utf-8') as file:
            file.write(html_content)
        print(f"HTML 文件已生成:{html_output_path}")
    except Exception as e:
        print(f"错误:写入 HTML 文件时出错 - {e}")


if __name__ == "__main__":
    json_file_path = 'province_population.json'
    html_output_path = 'province_population_chart.html'

    province_population = read_province_population_from_json(json_file_path)
    generate_bar_chart_html(province_population, html_output_path)
    

bar_chart_template.html

<!DOCTYPE html>
<html lang="en">

<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>省份人口柱状图</title>
    <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
</head>

<body>
    <canvas id="provincePopulationChart" width="800" height="400"></canvas>
    <script>
        const ctx = document.getElementById('provincePopulationChart').getContext('2d');
        const provinces = {{ provinces|tojson }};
        const populations = {{ populations|tojson }};

        new Chart(ctx, {
            type: 'bar',
            data: {
                labels: provinces,
                datasets: [{
                    label: '人口总数',
                    data: populations,
                    backgroundColor: 'rgba(75, 192, 192, 0.2)',
                    borderColor: 'rgba(75, 192, 192, 1)',
                    borderWidth: 1
                }]
            },
            options: {
                scales: {
                    y: {
                        beginAtZero: true
                    }
                }
            }
        });
    </script>
</body>

</html>
    

1-3-2-输出结果

1-3-3-例子02

创建 MySQL 数据库表,并将 2020 年到 2025 年不同省份的人口总数以饼状图形式显示在 HTML 中

database_operations.py

import random

def create_table(mycursor):
    mycursor.execute("""
    CREATE TABLE IF NOT EXISTS population (
        id INT AUTO_INCREMENT PRIMARY KEY,
        province VARCHAR(255),
        year INT,
        population INT
    )
    """)

def insert_data(mycursor, mydb):
    provinces = ["广东", "山东", "河南", "四川", "江苏"]
    years = [2020, 2021, 2022, 2023, 2024, 2025]
    for province in provinces:
        for year in years:
            population = random.randint(10000000, 20000000)
            sql = "INSERT INTO population (province, year, population) VALUES (%s, %s, %s)"
            val = (province, year, population)
            mycursor.execute(sql, val)
    mydb.commit()

def query_data(mycursor):
    provinces = ["广东", "山东", "河南", "四川", "江苏"]
    total_population = {}
    for province in provinces:
        sql = "SELECT SUM(population) FROM population WHERE province = %s AND year BETWEEN 2020 AND 2025"
        val = (province,)
        mycursor.execute(sql, val)
        result = mycursor.fetchone()
        total_population[province] = result[0]
    return total_population
    

database_connection.py

import mysql.connector

def create_connection():
    mydb = mysql.connector.connect(
        host="localhost",
        user="your_username",
        password="your_password",
        database="your_database"
    )
    return mydb
    

chart_generator.py

import matplotlib.pyplot as plt
import os

def generate_chart(total_population):
    labels = total_population.keys()
    sizes = total_population.values()

    plt.pie(sizes, labels=labels, autopct='%1.1f%%')
    plt.axis('equal')

    if not os.path.exists('charts'):
        os.makedirs('charts')
    chart_path = 'charts/population_pie_chart.png'
    plt.savefig(chart_path)
    plt.close()
    return chart_path
    

html_generator.py

def generate_html(chart_path):
    html_content = f"""
    <!DOCTYPE html>
    <html lang="en">
    <head>
        <meta charset="UTF-8">
        <title>2020 - 2025 年不同省份人口总数饼状图</title>
    </head>
    <body>
        <h1>2020 - 2025 年不同省份人口总数饼状图</h1>
        <img src="{chart_path}" alt="Population Pie Chart">
    </body>
    </html>
    """
    with open('population_chart.html', 'w', encoding='utf-8') as f:
        f.write(html_content)
    

main.py

from database_connection import create_connection
from database_operations import create_table, insert_data, query_data
from chart_generator import generate_chart
from html_generator import generate_html

# 建立数据库连接
mydb = create_connection()
mycursor = mydb.cursor()

# 创建表
create_table(mycursor)

# 插入数据
insert_data(mycursor, mydb)

# 查询数据
total_population = query_data(mycursor)

# 生成饼状图
chart_path = generate_chart(total_population)

# 生成 HTML 文件
generate_html(chart_path)

print("数据库表创建成功,数据插入成功,饼状图已保存为图片,HTML 文件已生成。")
    

相关推荐

Python变量类型判断方法详解(python怎么判断变量名合不合法)

技术背景在Python编程中,变量类型的判断是一项基础且重要的操作。由于Python是动态类型语言,变量的类型在运行时才能确定,因此在开发过程中,我们常常需要明确变量的类型,以便进行相应的操作。同时,...

如何确定Python变量的类型(python指定变量类型)

技术背景在Python编程中,变量是动态类型的,即变量在使用过程中可以被赋予不同类型的值。这在带来灵活性的同时,也可能导致在某些情况下需要明确变量的具体类型。例如,在进行数据处理、类型转换或错误检查时...

Python 中检查类型的标准方法(python检查函数)

在Python的编程世界里,我们常常会遇到需要检查变量类型的情况。在StackOverflow上有一个热门问题“What'sthecanonicalwaytocheck...

Python中确定对象类型的方法(python中确定对象类型的方法有哪些)

技术背景在Python编程中,有时候需要确定一个变量的类型,例如判断一个变量是列表、字典还是其他类型。了解对象的类型有助于进行条件判断、错误处理以及编写通用的代码。Python提供了多种方法来实现这一...

Python 中的类型检查(python类型检查函数)

Python是一种解释型、交互式和面向对象的编程语言。它支持动态类型,具有非常高级的动态数据类型。动态数据类型使得开发者能够专注于实际程序,而不是在编写代码时花费时间和精力去指定数据类型。Pytho...

Python从入门到放弃-详解列表、元组和字典

什么是列表?列表是在Python中一种常见的数据存储结构,它可以用来存储不同类型的数据。与其他开发语言不同的是Python中的列表中可以存储各种类型的数据,而不是只能用来存储一种类型的数据,如下所示l...

现代化python字典合并的技巧(python字典怎么合并)

现代Python字典合并:使用|运算符在Python3.9之前,有两种常见的合并字典的方法:使用update方法或**运算符。然而,这两种方法都有其缺点。在本文中,我们将探讨Python中合并字典的...

三种常用方法合并 Python 字典,你学会了吗?

在使用Python字典时,你有时需要将多个字典合并成一个,以便后续处理。本教程将介绍三种常见的Python字典合并方法。我们将重点学习以下三种方式:使用update()方法字典解包并集运算...

23-Python-第三方库Json(python第三方库代码大全)

1-json库的使用`json`库是Python标准库的一部分,用于处理JSON数据。它提供了`loads`、`dumps`等方法。安装三方库pipinstalljson1-1-将JSON字符串解...

Python中复制字典并仅修改副本的方法

技术背景在Python编程中,当我们想要复制一个字典并对副本进行修改,而不影响原始字典时,可能会遇到一些问题。直接使用赋值语句dict2=dict1并不能实现真正的复制,而是让dict2和...

Python 中的字典推导式(字典在python)

通过本文,你将了解有关Python字典推导式的所有信息,包括如何创建字典、使用条件语句(if-else语句)访问字典以及如何使用易于实现的步骤嵌套推导式!什么是字典Python中的字典是项目的...

python笔记17:字典推导式(python 字典的字典)

字典推导式'''#如:1,2,……10为键,平方为值dict_shu={}forimteinrange(1,11):dict_shu[imte]=imte**2print...

Python代码使用字典推导式(字典 python)

解释python代码:stoi={ch:ifori,chinenumerate(chars)}这段Python代码使用字典推导式创建了一个字符到索引的映射字典。具体解释如下:stoi=...

Python-中的词典 {_}(python字典用法大全)

字典是键值对的集合,其中每个键都链接到一个值(可以是数字、字符串、列表,甚至是另一个字典)。键和值用冒号分隔,每个键值对用逗号分隔,用大括号{}括起来。访问值:可以通过引用方括号内的键来检索值。a...

Python 开发工程师必会的 5 个文件操作库

在Python开发的世界里,文件操作是一项基础且高频的任务。从日常的数据处理到复杂的项目部署,熟练掌握文件操作库能让我们的开发工作事半功倍。本文和大家聊聊我眼中开发必备的5个文件操作库,它们各...

取消回复欢迎 发表评论: