面对复杂数据,Pandas 如何助力数据清洗工作?
off999 2025-06-10 17:28 18 浏览 0 评论
在数据分析和机器学习领域,数据清洗是至关重要的前置环节。高质量的数据是得出准确分析结论和构建有效模型的基石,而原始数据往往包含缺失值、重复值、异常值以及错误的数据格式等问题。Pandas 作为 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据,是数据清洗的得力工具。
一、Pandas 基础入门
Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,简单直观地处理关系型、标记型数据。在使用 Pandas 进行数据清洗前,需先导入 Pandas 库,通常别名为pd:
import pandas as pd
(一)数据读取
Pandas 支持读取多种常见格式的数据,如 CSV、Excel、SQL 等。以读取 CSV 文件为例:
df = pd.read_csv('data.csv')
这里的data.csv是文件名,实际使用时需替换为真实的文件名及路径。读取后,可使用head()方法查看数据的前几行,默认前 5 行:
df.head()
(二)数据基本信息查看
查看数据的基本信息有助于了解数据的结构和特征,如列的数据类型、缺失值情况等。使用info()方法:
df.info()
使用describe()方法查看数值型列的统计信息,包括计数、均值、标准差、最小值、25% 分位数、50% 分位数、75% 分位数和最大值:
df.describe()
二、处理缺失值
缺失值是数据中常见的问题,可能影响分析结果的准确性。Pandas 提供了丰富的方法来处理缺失值。
(一)检测缺失值
使用isnull()或isna()方法检测数据中的缺失值,这两个方法功能相同,返回一个布尔类型的 DataFrame,其中缺失值对应的位置为True,非缺失值对应的位置为False。结合sum()方法可统计每列的缺失值数量:
import pandas as pd
# 创建示例数据
data = {
'A': [1, None, 3],
'B': [4, 5, None],
'C': [7, 8, 9]
}
df = pd.DataFrame(data)
# 检测缺失值并统计数量
missing_values = df.isnull().sum()
print(missing_values)
运行结果:
A 1
B 1
C 0
dtype: int64
(二)删除缺失值
通过dropna()方法删除含有缺失值的行或列。axis=0(默认值)表示删除行,axis=1表示删除列。how='any'(默认值)表示只要有一个缺失值就删除,how='all'表示全部为缺失值才删除。
# 删除含有缺失值的行
df_dropped_rows = df.dropna(axis=0, how='any')
print(df_dropped_rows)
# 删除含有缺失值的列
df_dropped_columns = df.dropna(axis=1, how='any')
print(df_dropped_columns)
删除行的运行结果:
A B C
2 3 5 9
删除列的运行结果:
C
0 7
1 8
2 9
(三)填充缺失值
使用fillna()方法填充缺失值,可以填充固定值、均值、中位数、众数等,也可以使用前向填充(ffill)或后向填充(bfill)。
# 填充固定值0
df_filled_constant = df.fillna(0)
print(df_filled_constant)
# 用均值填充数值型列的缺失值
df['A'] = df['A'].fillna(df['A'].mean())
df['B'] = df['B'].fillna(df['B'].mean())
print(df)
# 前向填充
df_ffilled = df.fillna(method='ffill')
print(df_ffilled)
# 后向填充
df_bfilled = df.fillna(method='bfill')
print(df_bfilled)
填充固定值 0 的运行结果:
A B C
0 1.0 4.0 7
1 0.0 5.0 8
2 3.0 0.0 9
用均值填充数值型列缺失值的运行结果(假设均值计算结果为:A 列均值 2.0,B 列均值 4.5):
A B C
0 1.0 4.0 7
1 2.0 5.0 8
2 3.0 4.5 9
前向填充的运行结果:
A B C
0 1.0 4.0 7
1 1.0 5.0 8
2 3.0 5.0 9
后向填充的运行结果:
A B C
0 1.0 4.0 7
1 3.0 5.0 8
2 3.0 9.0 9
三、处理重复值
重复值会占用额外的存储空间,影响数据分析的效率和准确性,需要进行处理。
(一)检测重复值
使用duplicated()方法检测数据中的重复行,返回一个布尔类型的 Series,其中重复行对应的位置为True,非重复行对应的位置为False。
import pandas as pd
# 创建示例数据
data = {
'A': [1, 2, 2, 3],
'B': [4, 5, 5, 6]
}
df = pd.DataFrame(data)
# 检测重复值
duplicate_rows = df.duplicated()
print(duplicate_rows)
运行结果:
0 False
1 False
2 True
3 False
dtype: bool
(二)删除重复值
通过drop_duplicates()方法删除重复行,默认保留首次出现的行,可通过keep='last'参数保留最后一次出现的行,还可通过subset参数指定基于某些列来判断重复。
# 删除重复行,保留首次出现的行
df_dropped_duplicates = df.drop_duplicates(keep='first')
print(df_dropped_duplicates)
# 删除重复行,保留最后一次出现的行
df_dropped_duplicates_last = df.drop_duplicates(keep='last')
print(df_dropped_duplicates_last)
# 基于'A'列判断重复并删除
df_dropped_duplicates_subset = df.drop_duplicates(subset=['A'], keep='first')
print(df\_dropped\_duplicates\_subset)
保留首次出现行的运行结果:
A B
0 1 4
1 2 5
3 3 6
保留最后一次出现行的运行结果:
A B
0 1 4
2 2 5
3 3 6
基于 'A' 列判断重复并删除的运行结果:
A B
0 1 4
1 2 5
3 3 6
四、数据类型转换
在数据分析过程中,有时需要将数据转换为合适的数据类型,以满足分析需求或避免类型错误。Pandas 提供了astype()方法用于数据类型转换。
import pandas as pd
# 创建示例数据
data = {
'A': ['1', '2', '3'],
'B': [4.5, 5.6, 6.7]
}
df = pd.DataFrame(data)
# 将'A'列从字符串类型转换为整型
df['A'] = df['A'].astype(int)
print(df)
# 将'B'列从浮点型转换为整型(会截断小数部分)
df['B'] = df['B'].astype(int)
print(df)
将 'A' 列从字符串类型转换为整型的运行结果:
A B
0 1 4.5
1 2 5.6
2 3 6.7
将 'B' 列从浮点型转换为整型的运行结果:
A B
0 1 4
1 2 5
2 3 6
五、处理异常值
异常值是指与其他数据明显不同的数据点,可能是由于数据录入错误、测量误差或其他原因导致的。异常值可能会对数据分析和模型训练产生较大影响,需要进行处理。
(一)基于统计方法识别异常值
通过计算数据的统计指标,如均值、标准差、分位数等,来识别异常值。例如,使用 3σ 原则,数据的数值分布几乎全部集中在区间 (μ - 3σ, μ + 3σ) 内,超出这个范围的数据仅占不到 0.3%,可认为超出 3σ 的部分数据为异常数据。
import pandas as pd
import numpy as np
# 创建示例数据
data = {
'A': [1, 2, 3, 4, 100]
}
df = pd.DataFrame(data)
# 计算均值和标准差
mean = df['A'].mean()
std = df['A'].std()
# 计算异常值的阈值
lower_bound = mean - 3 * std
upper_bound = mean + 3 * std
# 识别异常值
outliers = df[(df['A'] < lower_bound) | (df['A'] > upper_bound)]
print(outliers)
运行结果:
A
4 100
(二)替换异常值
识别出异常值后,可以根据具体情况进行处理,如替换为指定的值、均值、中位数等。
# 将异常值替换为均值
df['A'] = df['A'].apply(lambda x: mean if (x < lower_bound) | (x > upper_bound) else x)
print(df)
运行结果:
A
0 1.0
1 2.0
2 3.0
3 4.0
4 3.0
六、数据格式化
数据格式化是指对数据的格式进行调整和规范,使其更易于分析和处理。常见的数据格式化操作包括重命名列和索引、字符串处理等。
(一)重命名列和索引
使用rename()方法重命名列和索引,使数据集的名称更直观,提升数据操作的便捷性和准确性。
import pandas as pd
# 创建示例数据
data = {
'col1': [1, 2, 3],
'col2': [4, 5, 6]
}
df = pd.DataFrame(data)
# 重命名列
df = df.rename(columns={'col1': 'new_col1', 'col2': 'new_col2'})
print(df)
# 重命名索引
df = df.rename(index={0: 'new_index0', 1: 'new_index1', 2: 'new_index2'})
print(df)
重命名列的运行结果:
new_col1 new_col2
0 1 4
1 2 5
2 3 6
重命名索引的运行结果:
new_col1 new_col2
new_index0 1 4
new_index1 2 5
new_index2 3 6
(二)字符串处理
对于字符串类型的列,可使用str方法进行各种字符串操作,如转换为小写、大写,去除两端空格,分割字符串等。
import pandas as pd
# 创建示例数据
data = {
'name': [' John Doe ', 'Jane Smith']
}
df = pd.DataFrame(data)
# 去除字符串两端的空格
df['name'] = df['name'].str.strip()
print(df)
# 转换为小写
df['name'] = df['name'].str.lower()
print(df)
去除字符串两端空格的运行结果:
name
0 John Doe
1 Jane Smith
转换为小写的运行结果:
name
0 john doe
1 jane smith
七、总结
数据清洗是数据分析和机器学习的重要环节,Pandas 提供了丰富、强大的工具和方法来处理各种数据清洗任务。通过掌握 Pandas 的数据清洗技巧,能够有效地提高数据质量,为后续的数据分析和建模工作奠定坚实的基础。在实际应用中,需要根据数据的特点和分析需求,灵活选择合适的数据清洗方法和策略。同时,不断积累实践经验,提高数据清洗的效率和准确性。
相关推荐
- python import 出现 ModuleNotFoundError 解决方法
-
错误的原因是你的Python环境没有正确安装库文件。本文以Scapy为例,给出详细方案:1.确认是否成功安装Scapy运行以下命令检查Scapy是否已安装:pip3list|gre...
- Github 7.4k star,一个强大的 Python 库-sh!
-
大家好,今天为大家分享一个强大的Python库-sh。Github地址:https://github.com/amoffat/shsh库是Python生态系统中一个专门用于执行系统命令的第三方...
- 学习编程第148天 python编程循环的嵌套使用
-
今天学习的是刘金玉老师零基础Python教程第32期,主要内容是python编程循环的嵌套使用。(一)一维数组及输出#一维数组list1=["110001","四川二流子...
- 2025-07-09:使数组元素互不相同所需的最少操作次数。用go语言,
-
2025-07-09:使数组元素互不相同所需的最少操作次数。用go语言,给定一个整数数组nums和一个整数k,对于数组中的每个元素,你最多可以对其进行一次操作:将一个在区间[-k,k]内的...
- python数据分析numpy基础之max求数组最大值
-
1python数据分析numpy基础之max求数组最大值python的numpy库的max()函数,用于计算沿指定轴(一个轴或多个轴)的最大值。用法numpy.max(a,axis=None,...
- 加快Python算法的四个方法(四)Dask
-
CDA数据分析师出品相信大家在做一些算法经常会被庞大的数据量所造成的超多计算量需要的时间而折磨的痛苦不已,接下来我们围绕四个方法来帮助大家加快一下Python的计算时间,减少大家在算法上的等待时间。...
- 六十六、Leetcode数组系列(中篇)(leetcode679)
-
@Author:Runsen@Date:2020/6/8人生最重要的不是所站的位置,而是内心所朝的方向。只要我在每篇博文中写得自己体会,修炼身心;在每天的不断重复学习中,耐住寂寞,练就真功,不畏艰难...
- Numpy中的ndarray是什么?('numpy.ndarray' object has no attribute 'append')
-
1.创建ndarray创建数组最简单的办法就是使用array函数。它接受一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组。np.array会尝试为新建的这个数组推断出一个...
- Python中的数据导入与查询(python怎样导入数据库)
-
适用场景:快速导入文本/Excel数据→Pandas读取大型数值数据→Numpy处理复杂二进制文件→h5py/scipy.io数据库交互→SQLAlchemy+Pandas一、数据...
- 2025-07-02:统计数组中的美丽分割。用go语言,给定一个整数数组
-
2025-07-02:统计数组中的美丽分割。用go语言,给定一个整数数组nums,我们要把它划分成三个连续且非空的子数组nums1、nums2、nums3,且这三个子数组按顺序拼接后还原为原数组...
- 2025-07-10:字符相同的最短子字符串Ⅰ。用go语言,给定一个长度
-
2025-07-10:字符相同的最短子字符串Ⅰ。用go语言,给定一个长度为n的二进制字符串s和一个允许执行的最大操作次数numOps。每次操作可以选择字符串中的任意一个位置i(0≤i...
- 2025-06-19:识别数组中的最大异常值。用go语言,你有一个长度为
-
2025-06-19:识别数组中的最大异常值。用go语言,你有一个长度为n的整数数组nums,其中恰好有n-2个元素属于“特殊数字”类别。剩下的两个元素中,一个等于所有这些特殊数字的总和,另...
- 2025-06-28:长度可被 K 整除的子数组的最大元素和。用go语言,给
-
2025-06-28:长度可被K整除的子数组的最大元素和。用go语言,给定一个整数数组nums和一个整数k,求nums中长度为k的倍数的非空子数组中,子数组和的最大值。返回该最大和...
- 在 Python 中如何向一个已排序的数组(列表) 中插入一个数呢
-
在Python中如何向一个已排序的数组(列表)中插入一个数呢?方法有很多种,关键在于原来数组是什么样的排序,用到啥排序方法效率高,就用哪种。我们来练习其中的几种插入方法,另外也掌握下遍历数组的...
- 2025-07-04:统计符合条件长度为 3 的子数组数目。用go语言,给定
-
2025-07-04:统计符合条件长度为3的子数组数目。用go语言,给定一个整数数组nums,请你计算有多少个长度恰好为3的连续子数组满足这样的条件:子数组的第一个元素与第三个元素的和,正好...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- python import 出现 ModuleNotFoundError 解决方法
- Github 7.4k star,一个强大的 Python 库-sh!
- 学习编程第148天 python编程循环的嵌套使用
- 2025-07-09:使数组元素互不相同所需的最少操作次数。用go语言,
- python数据分析numpy基础之max求数组最大值
- 加快Python算法的四个方法(四)Dask
- 六十六、Leetcode数组系列(中篇)(leetcode679)
- Numpy中的ndarray是什么?('numpy.ndarray' object has no attribute 'append')
- Python中的数据导入与查询(python怎样导入数据库)
- 2025-07-02:统计数组中的美丽分割。用go语言,给定一个整数数组
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)