python入门-Day 26: 优化与调试(python优化方法)
off999 2025-07-21 17:08 89 浏览 0 评论
优化与调试,内容包括处理模型运行中的常见问题(内存、依赖)、调整参数(如最大生成长度),以及练习改进 Day 25 的文本生成结果。我会设计一个结构化的任务,帮助你掌握优化和调试技巧,同时提升模型性能。
任务目标
- 学会识别和解决大语言模型运行中的常见问题(如内存不足、依赖冲突)。
- 掌握调整参数以优化生成结果的方法。
- 改进 Day 25 的 GPT-2 文本生成代码,提升输出质量和效率。
任务详情
1. 处理模型运行中的常见问题
问题 1:内存不足(Memory Issues)
- 场景:在本地运行 GPT-2 时,可能会因内存不足(尤其在低配 Mac 上)导致崩溃。
- 解决方法:
- 检查内存使用:
- python
- import torch print("可用内存 (GB):", torch.cuda.memory_available() / 1e9 if torch.cuda.is_available() else "N/A") print("已用内存 (GB):", torch.cuda.memory_allocated() / 1e9 if torch.cuda.is_available() else "N/A")
- 对于 M3 芯片,使用 MPS:
- python
- if torch.backends.mps.is_available(): print("MPS 设备可用")
- 使用更小模型:将 gpt2 替换为 distilgpt2(参数从 124M 减到 82M):
- python
- generator = pipeline("text-generation", model="distilgpt2", device="mps" if torch.backends.mps.is_available() else "cpu")
- 减少批量大小:避免一次生成多条文本(num_return_sequences=1)。
- 任务:
- 运行 Day 25 的代码,观察内存是否溢出。
- 替换为 distilgpt2,比较内存占用和运行速度。
问题 2:依赖冲突(Dependency Issues)
- 场景:你之前遇到的 torchvision::nms 错误,源于 PyTorch 和 torchvision 版本不匹配。
- 解决方法:
- 检查版本:
- python
- import torch import torchvision print("PyTorch:", torch.__version__) print("torchvision:", torchvision.__version__)
- 更新依赖:
- pip install torch==2.6.0 torchvision==0.21.0 transformers --force-reinstall
- 或重建环境:
- conda create -n pythonAI python=3.12 conda activate pythonAI pip install torch torchvision transformers
- 任务:
- 运行检查版本的代码,记录结果。
- 如果版本不匹配,更新依赖并验证 from transformers import pipeline 是否正常。
2. 调整参数优化生成结果
- 任务要求:调整 GPT-2 的生成参数,提升文本连贯性和质量。
- 关键参数:
- max_length:控制生成文本长度。
- temperature:控制随机性(越高越随机,推荐 0.7-1.0)。
- top_k:限制采样范围(推荐 50)。
- num_beams:使用束搜索提升连贯性(推荐 2-4)。
- 示例代码:
- python
- from transformers import pipeline import torch device = "mps" if torch.backends.mps.is_available() else "cpu" generator = pipeline("text-generation", model="gpt2", device=device) prompt = "Once upon a time" result = generator(prompt, max_length=100, temperature=0.7, top_k=50, num_beams=2, num_return_sequences=1) print("优化后的生成文本:") print(result[0]["generated_text"])
- 任务:
- 运行代码,观察生成的文本质量。
- 调整以下参数,记录变化:
- max_length: 50 vs 150
- temperature: 0.5(更保守) vs 1.2(更随机)
- top_k: 20 vs 100
- num_beams: 1(无束搜索) vs 4
3. 练习:改进 Day 25 的生成结果
- Day 25 原代码:
- python
- from transformers import pipeline generator = pipeline("text-generation", model="gpt2") prompt = "Once upon a time" result = generator(prompt, max_length=50, num_return_sequences=1) print("生成文本:", result[0]["generated_text"])
- 问题:
- 输出可能不连贯(例如突然中断或重复)。
- 运行慢(未用 M3 的 MPS)。
- 缺乏多样性或创意。
- 改进代码:
- python
- import time import torch from transformers import pipeline # 设置设备 device = "mps" if torch.backends.mps.is_available() else "cpu" print(f"使用设备: {device}") # 加载模型 start_time = time.time() generator = pipeline("text-generation", model="distilgpt2", device=device) print(f"模型加载耗时: {time.time() - start_time:.2f} 秒") # 输入提示词 prompt = "Once upon a time in a distant kingdom" # 生成文本 start_time = time.time() result = generator( prompt, max_length=100, # 增加长度,生成完整故事 temperature=0.8, # 适度随机性 top_k=40, # 限制词汇范围,提升连贯性 num_beams=4, # 束搜索改善质量 num_return_sequences=1, # 单条输出 no_repeat_ngram_size=2 # 避免重复短语 ) print(f"生成耗时: {time.time() - start_time:.2f} 秒") # 输出结果 print("改进后的生成文本:") print(result[0]["generated_text"])
- 改进点:
- 使用 distilgpt2:更轻量,加载和推理更快。
- 启用 MPS:利用 M3 的 GPU 加速。
- 优化参数:
- max_length=100:生成更长的故事。
- temperature=0.8:平衡创意和连贯性。
- top_k=40:控制输出多样性。
- num_beams=4:提升文本逻辑性。
- no_repeat_ngram_size=2:防止短语重复。
- 计时:监控性能。
- 任务:
- 运行改进代码,比较与 Day 25 原输出的质量和速度。
- 修改 prompt 为其他内容(例如 "In a futuristic city"),生成一段文字。
- 调整参数,尝试生成至少 3 句话的连贯故事。
- 挑战:如果输出仍不理想,添加 top_p=0.9(核采样),观察效果。
进阶挑战(可选)
- 内存优化:
- 使用 torch.no_grad() 减少推理时的内存占用:
- python
- with torch.no_grad(): result = generator(prompt, max_length=100, num_beams=4)
- 调试输出:
- 检查生成过程中的 token:
- python
- inputs = generator.tokenizer(prompt, return_tensors="pt").to(device) outputs = generator.model.generate(**inputs, max_length=100, num_beams=4) print("生成的 token:", outputs) print("解码文本:", generator.tokenizer.decode(outputs[0]))
- 多设备兼容:
- 添加 CPU/GPU 切换逻辑,测试不同设备的性能。
学习成果
- 完成任务后,你将:
- 能识别和解决内存不足、依赖冲突等问题。
- 掌握参数调整对生成结果的影响。
- 改进 Day 25 的代码,生成更高质量的文本。
这个任务应该能帮助你深入理解模型优化和调试!如果运行中遇到问题(例如内存溢出或依赖错误),请告诉我具体错误,我会帮你解决。快试试吧!
相关推荐
- 安全教育登录入口平台(安全教育登录入口平台官网)
-
122交通安全教育怎么登录:122交通网的注册方法是首先登录网址http://www.122.cn/,接着打开网页后,点击右上角的“个人登录”;其次进入邮箱注册,然后进入到注册页面,输入相关信息即可完...
- 大鱼吃小鱼经典版(大鱼吃小鱼经典版(经典版)官方版)
-
大鱼吃小鱼小鱼吃虾是于谦跟郭麒麟的《我的棒儿呢?》郭德纲说于思洋郭麒麟作诗的相声,最后郭麒麟做了一首,师傅躺在师母身上大鱼吃小鱼小鱼吃虾虾吃水水落石出师傅压师娘师娘压床床压地地动山摇。...
-
- 哪个软件可以免费pdf转ppt(免费的pdf转ppt软件哪个好)
-
要想将ppt免费转换为pdf的话,我们建议大家可以下一个那个wps,如果你是会员的话,可以注册为会员,这样的话,在wps里面的话,就可以免费将ppt呢转换为pdfpdf之后呢,我们就可以直接使用,不需要去直接不需要去另外保存,为什么格式转...
-
2026-02-04 09:03 off999
- 电信宽带测速官网入口(电信宽带测速官网入口app)
-
这个网站看看http://www.swok.cn/pcindex.jsp1.登录中国电信网上营业厅,宽带光纤,贴心服务,宽带测速2.下载第三方软件,如360等。进行在线测速进行宽带测速时,尽...
- 植物大战僵尸95版手机下载(植物大战僵尸95 版下载)
-
1可以在应用商店或者游戏平台上下载植物大战僵尸95版手机游戏。2下载教程:打开应用商店或者游戏平台,搜索“植物大战僵尸95版”,找到游戏后点击下载按钮,等待下载完成即可安装并开始游戏。3注意:确...
- 免费下载ppt成品的网站(ppt成品免费下载的网站有哪些)
-
1、Chuangkit(chuangkit.com)直达地址:chuangkit.com2、Woodo幻灯片(woodo.cn)直达链接:woodo.cn3、OfficePlus(officeplu...
- 2025世界杯赛程表(2025世界杯在哪个国家)
-
2022年卡塔尔世界杯赛程公布,全部比赛在卡塔尔境内8座球场举行,2022年,决赛阶段球队全部确定。揭幕战于当地时间11月20日19时进行,由东道主卡塔尔对阵厄瓜多尔,决赛于当地时间12月18日...
- 下载搜狐视频电视剧(搜狐电视剧下载安装)
-
搜狐视频APP下载好的视频想要导出到手机相册里方法如下1、打开手机搜狐视频软件,进入搜狐视频后我们点击右上角的“查找”,找到自已喜欢的视频。2、在“浏览器页面搜索”窗口中,输入要下载的视频的名称,然后...
- 永久免费听歌网站(丫丫音乐网)
-
可以到《我爱音乐网》《好听音乐网》《一听音乐网》《YYMP3音乐网》还可以到《九天音乐网》永久免费听歌软件有酷狗音乐和天猫精灵,以前要跳舞经常要下载舞曲,我从QQ上找不到舞曲下载就从酷狗音乐上找,大多...
- 音乐格式转换mp3软件(音乐格式转换器免费版)
-
有两种方法:方法一在手机上操作:1、进入手机中的文件管理。2、在其中选择“音乐”,将显示出手机中的全部音乐。3、点击“全选”,选中所有音乐文件。4、点击屏幕右下方的省略号图标,在弹出菜单中选择“...
- 电子书txt下载(免费的最全的小说阅读器)
-
1.Z-library里面收录了近千万本电子书籍,需求量大。2.苦瓜书盘没有广告,不需要账号注册,使用起来非常简单,直接搜索预览下载即可。3.鸠摩搜书整体风格简洁清晰,书籍资源丰富。4.亚马逊图书书籍...
- 最好免费观看高清电影(播放免费的最好看的电影)
-
在目前的网上选择中,IMDb(互联网电影数据库)被认为是最全的电影网站之一。这个网站提供了各种类型的电影和电视节目的海量信息,包括剧情介绍、演员表、评价、评论等。其还提供了有关电影制作背后的详细信息,...
- 孤单枪手2简体中文版(孤单枪手2简体中文版官方下载)
-
要将《孤胆枪手2》游戏的征兵秘籍切换为中文,您可以按照以下步骤进行操作:首先,打开游戏设置选项,通常可以在游戏主菜单或游戏内部找到。然后,寻找语言选项或界面选项,点击进入。在语言选项中,选择中文作为游...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
win7系统还原步骤图解(win7还原电脑系统的步骤)
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
16949认证费用是多少(16949审核员太难考了)
-
linux软件(linux软件图标)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
windows7旗舰版多少钱(win7旗舰版要多少钱)
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
