百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

python人工智能:完整的图片识别(非图片验证码),以及模型的使用

off999 2024-09-14 07:05 26 浏览 0 评论

作者:Python疯子

链接:https://www.jianshu.com/p/5b4e51869e64

这个可以说是一个绝对的福利中的福利。一整套的AI图片识别以及模型的使用。

一直都在说人工智能,图像识别,又有几个人会呢,网上文章成山,前一段时间因工作需要,我一个做后端开发的,要做图片识别。

于是开始了疯狂的地毯式搜索,先说网上介绍最多,最好,也是最坑的模型---AIimage,10行代码完成图像识别,通过代码是可以识现,但必须使用它们的模型,不能自己训练,于是开始找AIimage的训练模型,也找到了,也能训练,用训练好的模型,正式测试,哇,屎一样!

后来得到一位大哥真传,给了这套完整的训练+使用的完整代码,先说说这位大哥,那人真是一个好啊,我从git上获取代码,然后自己跑,各种bug+不会调试,我都不好意思问,这位大哥亲自帮忙调试,解决bug,远程调试,帮我弄到后半夜,太辛苦了,给大哥发个红包,没收,留下一句话:为了学习!!!

大哥永远是大哥

我之所以写这篇文章主要是方便像我一样的纯小白使用代码,因为源代码里没有完整的结构,也存在一些小小的问题,献上完整通过的代码。

我不会人工智能,下面内容来自大哥的原文章TensorFlow 复现ResNet系列模型

阅前须知:

为了使本文结构精简,理解简单,所以会尽量少涉及到有关数学公式,降低学习门槛,带领读者快速搭建ResNet-152经典模型并投入训练。

本文的最后会放出博主自己复现的ResNet模型,投入自己的数据集进行训练。

如读者在阅读时发现有错误的地方欢在评论的地方指出,共同进步

编译环境:Python3.5

TensorFlow-gpu 1.3.0

一、结构分析

关于ResNet的来源我就不进行赘述了,相信读者都对这个包揽各大图像识别赛事冠军的模型或多或少有一定的了解。

图片来源Google

说起卷积模型,LeNet、Inception、Vgg都是我们在学习图像识别领域神经网络的经典模型,以上图片模型就是经典的Vgg-19与34层传统卷积网络、ResNet-34的对比。

从计算量上来讲,Vgg-19的三层全连接神经网络的计算量明显大于传统卷积网络和resnet,传统卷积网络和resnet的参数数量相同

plain与resnet

从训练拟合度上讲,论文中分别给出了plain-18、plain-34和resnet-18、resnet-34的对比,我们不难发现plain随着层数的增加,精度并没有得到明显的提升,而resnet不仅随着层数的增加提高了训练精度,且相较同深度的plain而言精度更高

在以往的学习之中,我们知道深度网络随着层数的增加,很容易造成“退化”和“梯度消失”的问题,训练数据的过拟合。但在ResNet中,作者给出了一种解决方案:增加一个identity mapping(恒等映射,由于本文面向读者基础不同,就不加以详述,有能力的同学可以看一下ResNet作者的论文)

残差模块

上图是一个残差模块的结构示意,残差块想要有效果需要有两层或两层以上的layer,同时,输入x与输出F(x)的维度也须相同

residual block

在对于高于50层深度的resnet模型中,为了进一步减少计算量且保证模型精度,作者对残差模块进行了优化,将内部两层33layer换成11 → 33 → 11,。首先采用11卷积进行深度降维,减少残差模块在深度上的计算量,第二层33layer和之前的模块功能一样,提取图像特征,第三层1*1layer用于维度还原。

那么问题又来了,既然已经经过了3*3卷积,那输出维度怎么会一样呢?作者在论文中给出了三种解决方案:

1、维度不足部分全0填充

2、输入输出维度一致时使用恒等映射,不一致时使用线性投影

3、对于所有的block均使用线性投影。

在本文中,我们对模型主要采用全0填充。

好,以上就是简单的理论入门,接下来我们开始着手用TensorFlow对理论进行代码实现

二、实现规划(ResNet-50-101-152)

我们来选取最具有代表性的152层ResNet来进行搭建,论文的作者就是用152层模型来获得Imagenet大赛冠军的。

不同深度的ResNet结构

结构定义字典

在本文中,我们的模型搭建方式是以字典的形式进行循环堆砌

结构字典

ResNet_demo = { "layer_50":[{"depth": 256,"num_class": 3}, 
 {"depth": 512,"num_class": 4}, 
 {"depth": 1024,"num_class": 6}, 
 {"depth": 2048,"num_class": 3}], 
 "layer_101": [{"depth": 256, "num_class": 3},
 {"depth": 512, "num_class": 4}, 
 {"depth": 1024, "num_class": 23}, 
 {"depth": 2048, "num_class": 3}], 
 "layer_152": [{"depth": 256, "num_class": 3}, 
 {"depth": 512, "num_class": 8}, 
 {"depth": 1024, "num_class": 36}, 
 {"depth": 2048, "num_class": 3}]

子类模块规划

在ResNet网络传递的过程中,我们来探讨一些即将遇到的问题:

1.降采样过程

2.通道填充

降采样示意

降采样过程用于不同类瓶颈模块之间传递的过程,例如上图中粉色卷积层和蓝色卷积层之间的数据交互,蓝色卷积层中的/2就是降采样处理

降采样模块代码实现

def sampling(input_tensor, #Tensor入口 
 ksize = 1, #采样块大小 
 stride = 2): #采样步长 
data = input_tensor 
data = slim.max_pool2d(data,ksize,stride = stride) 
return data

通道填充用于输入数据x与结果数据F(x)生成残差和时造成的通道不匹配问题

通道填充模块代码实现

def depthFilling(input_tensor, #输入
 Tensor depth): #输出深度 
data = input_tensor #取出输入tensor的深度 
input_depth = data.get_shape().as_list()[3]
 #tf.pad用与维度填充,不理解的同学可以去TensoFLow官网了解一下
data = tf.pad(data,[[0,0], 
 [0,0], 
 [0,0], 
 [abs(depth - input_depth)//2, abs(depth - input_depth)//2]]) 
return data

好的,两个子类问题已经得到解决,下面来对残差模块进行规划实现

残差模块

因为搭建方向选择layer大于等于50层,所以我们采用论文中给出的第二种残差模块(11+33+1*1)

残差模块代码实现

def bottleneck(input_tensor,output_depth):
 #取出通道 
 redepth = input_tensor.get_shape().as_list()[3] 
 # 当通道不相符时,进行全零填充并降采样 
 if output_depth != redepth:
 #全零填充
 input_tensor = depthFilling(input_tensor,output_depth) 
 #降采样 
 input_tensor= sampling(input_tensor)
data = input_tensor 
#降通道处理 
data = slim.conv2d(inputs = data,
 num_outputs = output_depth//4,
 kernel_size = 1,stride = 1) 
#提取特征 
data = slim.conv2d(inputs = data,
 num_outputs = output_depth//4,
 kernel_size = 3,stride = 1)
#通道还原 
data = slim.conv2d(inputs = data,
 num_outputs = output_depth,
 kernel_size = 1,stride = 1,
 activation_fn=None,
 normalizer_fn=None) 
#生成残差 
data = data + input_tensor 
data = tf.nn.relu(data) 
return data

有了残差模块,我们就可以对网络结构进行堆砌了

不过,为了精简我们的代码块,我选择把全连接层拿出来单独写成一个模块

FC代码实现

这一模块没有什么技术含量,和我们入门时的BP神经网络差不多

def cnn_to_fc(input_tensor, #Tensor入口 
 num_output, #输出接口数量 
 train = False, #是否使用dropout 
 regularizer = None): #正则函数 
data = input_tensor #得到输出信息的维度,用于全连接层的输入 
data_shape = data.get_shape().as_list() 
nodes = data_shape[1] * data_shape[2] * data_shape[3] 
reshaped = tf.reshape(data, [data_shape[0], nodes]) 
#最后全连接层 
with tf.variable_scope('layer-fc'): 
 fc_weights = tf.get_variable("weight",
 [nodes,num_output], 
 initializer=tf.truncated_normal_initializer(stddev=0.1)) 
 if regularizer != None:
 tf.add_to_collection('losses', regularizer(fc_weights))
 fc_biases = tf.get_variable("bias", [num_output], 
 initializer=tf.constant_initializer(0.1)) 
fc = tf.nn.relu(tf.matmul(reshaped, fc_weights) + fc_biases) 
if train:
 fc = tf.nn.dropout(fc, 0.5) 
return fc

定义传递规则

inference

#堆叠ResNet模块
def inference(input_tensor, #数据入口
 demos, #模型资料(list)
 num_output, #出口数量
 is_train):
data = input_tensor #第一层卷积7*7,stride = 2,深度为64
data = conv2d_same(data,64,7,2,is_train,None,normalizer_fn = False)
data = slim.max_pool2d(data,3,2,scope="pool_1")
with tf.variable_scope("resnet"): #堆叠总类瓶颈模块
 demo_num = 0
 for demo in demos:
 demo_num += 1
 print("--------------------------------------------") #堆叠子类瓶颈模块
 for i in range(demo["num_class"]):
 print(demo_num)
 if demo_num is not 4:
 if i == demo["num_class"] - 1:
 stride = 2
 else:
 stride = 1
 else:
 stride = 1
 data = bottleneck(data,demo["depth"],stride,is_train)
 print("--------------------------------------------")
data = tf.layers.batch_normalization(data,training=is_train)
data = tf.nn.relu(data) #平均池化,也可用Avg_pool函数
data = tf.reduce_mean(data, [1, 2], keep_dims=True)
print("output : ", data) #最后全连接层
data = slim.conv2d(data,num_output,1,activation_fn=None)
data_shape = data.get_shape().as_list()
nodes = data_shape[1] * data_shape[2] * data_shape[3]
data = tf.reshape(data, [-1, nodes])
return data

inference调用方式

 inference(input_tensor = 数据入口
 demos = ResNet_demo["layer_101"], #获取模型词典
 num_output = 出口数量,
 is_train = False) # BN是否被训练

参考文献:

https://arxiv.org/pdf/1512.03385.pdf

http://blog.csdn.net/xxy0118/article/details/78324256

http://blog.csdn.net/mao_feng/article/details/52734438

使用介绍

图片分类以及目录结构

Snip20181114_1.png

第一步、运行FlowIO.py

image.png

第二步、运行train.py 训练模型 我这里图片少,训练的次数也少,真实情况要大量训练

image.png

第三步、运行Evaluation.py,测试结果集,可跳过

选择正确的模型:

正确的模型.png

第四步、使用模型useModel.py,进行图片识别

image.png

结果是对的!!!

请忽略我的结果,因为我只有8张训练集,这个每类最少要80张训练集。

稍后我多下些训练集试试

相关推荐

软件测试|Python requests库的安装和使用指南

简介requests库是Python中一款流行的HTTP请求库,用于简化HTTP请求的发送和处理,也是我们在使用Python做接口自动化测试时,最常用的第三方库。本文将介绍如何安装和使用request...

python3.8的数据可视化pyecharts库安装和经典作图,值得收藏

1.Deepin-linux下的python3.8安装pyecharts库(V1.0版本)1.1去github官网下载:https://github.com/pyecharts/pyecharts1...

我在安装Python库的时候一直出这个错误,尝试很多方法,怎么破?

大家好,我是皮皮。一、前言前几天在Python星耀群【我喜欢站在一号公路上】问了一个Python库安装的问题,一起来看看吧。下图是他的一个报错截图:二、实现过程这里【对不起果丹皮】提示到上图报错上面说...

自动化测试学习:使用python库Paramiko实现远程服务器上传和下载

前言测试过程中经常会遇到需要将本地的文件上传到远程服务器上,或者需要将服务器上的文件拉到本地进行操作,以前安静经常会用到xftp工具。今天安静介绍一种python库Paramiko,可以帮助我们通过代...

Python 虚拟环境管理库 - poetry(python虚拟环境virtualenv)

简介Poetry是Python中的依赖管理和打包工具,它允许你声明项目所依赖的库,并为你管理它们。相比于Pipev,我觉得poetry更加清爽,显示更友好一些,虽然它的打包发布我们一般不使...

pycharm(pip)安装 python 第三方库,时下载速度太慢咋办?

由于pip默认的官方软件源服务器在国外,所以速度慢,导致下载时间长,甚至下载会频繁中断,重试次数过多时会被拒绝。解决办法1:更换国内的pip软件源即可。pip指定软件源安装命令格式:pipinsta...

【Python第三方库安装】介绍8种情况,这里最全看这里就够了!

**本图文作品主要解决CMD或pycharm终端下载安装第三方库可能出错的问题**本作品介绍了8种安装方法,这里最全的python第三方库安装教程,简单易上手,满满干货!希望大家能愉快地写代码,而不要...

python关于if语句的运用(python中如何用if语句)

感觉自己用的最笨的方式来解这道题...

Python核心技术——循环和迭代(上)

这次,我们先来看看处理查找最大的数字问题上,普通人思维和工程师思维有什么不一样。例如:lst=[3,6,10,5,7,9,12]在lst列表中寻找最大的数字,你可能一眼能看出来,最大值为...

力扣刷题技巧篇|程序员萌新如何高效刷题

很多新手初刷力扣时,可能看过很多攻略,类似于按照类型来刷数组-链表-哈希表-字符串-栈与队列-树-回溯-贪心-动态规划-图论-高级数据结构之类的。可转念一想,即...

“千万别学我!从月薪3000到3万,我靠这3个笨方法逆袭”

3年前,我还在为房租而忧心忡忡,那时月薪仅有3000元;如今,我的月收入3万!很多人都问我是如何做到的,其实关键就在于3个步骤。今天我毫无保留地分享给大家,哪怕你现在工资低、缺乏资源,照着做也能够实...

【独家攻略】Anaconda秒建PyTorch虚拟环境,告别踩坑,小白必看

目录一.Pytorch虚拟环境简介二.CUDA简介三.Conda配置Pytorch环境conda安装Pytorch环境conda下载安装pytorch包测试四.NVIDIA驱动安装五.conda指令一...

入门扫盲:9本自学Python PDF书籍,让你避免踩坑,轻松变大神!

工作后在学习Python这条路上,踩过很多坑。今天给大家推荐9本自学Python,让大家避免踩坑。入门扫盲:让你不会从一开始就从入门到放弃1《看漫画学Python:有趣、有料、好玩、好用》2《Pyth...

整蛊大法传授于你,不要说是我告诉你的

大家好,我是白云。给大家整理一些恶搞代码,谨慎使用!小心没朋友。1.电脑死机打开无数个计算器,直到死机setwsh=createobject("wscript.shell")do...

python 自学“笨办法”7-9章(笨办法学python3视频)

笨办法这本书,只强调一点,就是不断敲代码,从中增加肌肉记忆,并且理解和记住各种方法。第7章;是更多的打印,没错就是更多的打印第八章;打印,打印,这次的内容是fomat的使用与否f“{}{}”相同第九...

取消回复欢迎 发表评论: