python人工智能:完整的图片识别(非图片验证码),以及模型的使用
off999 2024-09-14 07:05 53 浏览 0 评论
作者:Python疯子
链接:https://www.jianshu.com/p/5b4e51869e64
这个可以说是一个绝对的福利中的福利。一整套的AI图片识别以及模型的使用。
一直都在说人工智能,图像识别,又有几个人会呢,网上文章成山,前一段时间因工作需要,我一个做后端开发的,要做图片识别。
于是开始了疯狂的地毯式搜索,先说网上介绍最多,最好,也是最坑的模型---AIimage,10行代码完成图像识别,通过代码是可以识现,但必须使用它们的模型,不能自己训练,于是开始找AIimage的训练模型,也找到了,也能训练,用训练好的模型,正式测试,哇,屎一样!
后来得到一位大哥真传,给了这套完整的训练+使用的完整代码,先说说这位大哥,那人真是一个好啊,我从git上获取代码,然后自己跑,各种bug+不会调试,我都不好意思问,这位大哥亲自帮忙调试,解决bug,远程调试,帮我弄到后半夜,太辛苦了,给大哥发个红包,没收,留下一句话:为了学习!!!
大哥永远是大哥
我之所以写这篇文章主要是方便像我一样的纯小白使用代码,因为源代码里没有完整的结构,也存在一些小小的问题,献上完整通过的代码。
我不会人工智能,下面内容来自大哥的原文章TensorFlow 复现ResNet系列模型
:
阅前须知:
为了使本文结构精简,理解简单,所以会尽量少涉及到有关数学公式,降低学习门槛,带领读者快速搭建ResNet-152经典模型并投入训练。
本文的最后会放出博主自己复现的ResNet模型,投入自己的数据集进行训练。
如读者在阅读时发现有错误的地方欢在评论的地方指出,共同进步
编译环境:Python3.5
TensorFlow-gpu 1.3.0
一、结构分析
关于ResNet的来源我就不进行赘述了,相信读者都对这个包揽各大图像识别赛事冠军的模型或多或少有一定的了解。
图片来源Google
说起卷积模型,LeNet、Inception、Vgg都是我们在学习图像识别领域神经网络的经典模型,以上图片模型就是经典的Vgg-19与34层传统卷积网络、ResNet-34的对比。
从计算量上来讲,Vgg-19的三层全连接神经网络的计算量明显大于传统卷积网络和resnet,传统卷积网络和resnet的参数数量相同
plain与resnet
从训练拟合度上讲,论文中分别给出了plain-18、plain-34和resnet-18、resnet-34的对比,我们不难发现plain随着层数的增加,精度并没有得到明显的提升,而resnet不仅随着层数的增加提高了训练精度,且相较同深度的plain而言精度更高
在以往的学习之中,我们知道深度网络随着层数的增加,很容易造成“退化”和“梯度消失”的问题,训练数据的过拟合。但在ResNet中,作者给出了一种解决方案:增加一个identity mapping(恒等映射,由于本文面向读者基础不同,就不加以详述,有能力的同学可以看一下ResNet作者的论文)
残差模块
上图是一个残差模块的结构示意,残差块想要有效果需要有两层或两层以上的layer,同时,输入x与输出F(x)的维度也须相同
residual block
在对于高于50层深度的resnet模型中,为了进一步减少计算量且保证模型精度,作者对残差模块进行了优化,将内部两层33layer换成11 → 33 → 11,。首先采用11卷积进行深度降维,减少残差模块在深度上的计算量,第二层33layer和之前的模块功能一样,提取图像特征,第三层1*1layer用于维度还原。
那么问题又来了,既然已经经过了3*3卷积,那输出维度怎么会一样呢?作者在论文中给出了三种解决方案:
1、维度不足部分全0填充
2、输入输出维度一致时使用恒等映射,不一致时使用线性投影
3、对于所有的block均使用线性投影。
在本文中,我们对模型主要采用全0填充。
好,以上就是简单的理论入门,接下来我们开始着手用TensorFlow对理论进行代码实现
二、实现规划(ResNet-50-101-152)
我们来选取最具有代表性的152层ResNet来进行搭建,论文的作者就是用152层模型来获得Imagenet大赛冠军的。
不同深度的ResNet结构
结构定义字典
在本文中,我们的模型搭建方式是以字典的形式进行循环堆砌
结构字典
ResNet_demo = { "layer_50":[{"depth": 256,"num_class": 3},
{"depth": 512,"num_class": 4},
{"depth": 1024,"num_class": 6},
{"depth": 2048,"num_class": 3}],
"layer_101": [{"depth": 256, "num_class": 3},
{"depth": 512, "num_class": 4},
{"depth": 1024, "num_class": 23},
{"depth": 2048, "num_class": 3}],
"layer_152": [{"depth": 256, "num_class": 3},
{"depth": 512, "num_class": 8},
{"depth": 1024, "num_class": 36},
{"depth": 2048, "num_class": 3}]
子类模块规划
在ResNet网络传递的过程中,我们来探讨一些即将遇到的问题:
1.降采样过程
2.通道填充
降采样示意
降采样过程用于不同类瓶颈模块之间传递的过程,例如上图中粉色卷积层和蓝色卷积层之间的数据交互,蓝色卷积层中的/2就是降采样处理
降采样模块代码实现
def sampling(input_tensor, #Tensor入口 ksize = 1, #采样块大小 stride = 2): #采样步长 data = input_tensor data = slim.max_pool2d(data,ksize,stride = stride) return data
通道填充用于输入数据x与结果数据F(x)生成残差和时造成的通道不匹配问题
通道填充模块代码实现
def depthFilling(input_tensor, #输入 Tensor depth): #输出深度 data = input_tensor #取出输入tensor的深度 input_depth = data.get_shape().as_list()[3] #tf.pad用与维度填充,不理解的同学可以去TensoFLow官网了解一下 data = tf.pad(data,[[0,0], [0,0], [0,0], [abs(depth - input_depth)//2, abs(depth - input_depth)//2]]) return data
好的,两个子类问题已经得到解决,下面来对残差模块进行规划实现
残差模块
因为搭建方向选择layer大于等于50层,所以我们采用论文中给出的第二种残差模块(11+33+1*1)
残差模块代码实现
def bottleneck(input_tensor,output_depth): #取出通道 redepth = input_tensor.get_shape().as_list()[3] # 当通道不相符时,进行全零填充并降采样 if output_depth != redepth: #全零填充 input_tensor = depthFilling(input_tensor,output_depth) #降采样 input_tensor= sampling(input_tensor) data = input_tensor #降通道处理 data = slim.conv2d(inputs = data, num_outputs = output_depth//4, kernel_size = 1,stride = 1) #提取特征 data = slim.conv2d(inputs = data, num_outputs = output_depth//4, kernel_size = 3,stride = 1) #通道还原 data = slim.conv2d(inputs = data, num_outputs = output_depth, kernel_size = 1,stride = 1, activation_fn=None, normalizer_fn=None) #生成残差 data = data + input_tensor data = tf.nn.relu(data) return data
有了残差模块,我们就可以对网络结构进行堆砌了
不过,为了精简我们的代码块,我选择把全连接层拿出来单独写成一个模块
FC代码实现
这一模块没有什么技术含量,和我们入门时的BP神经网络差不多
def cnn_to_fc(input_tensor, #Tensor入口
num_output, #输出接口数量
train = False, #是否使用dropout
regularizer = None): #正则函数
data = input_tensor #得到输出信息的维度,用于全连接层的输入
data_shape = data.get_shape().as_list()
nodes = data_shape[1] * data_shape[2] * data_shape[3]
reshaped = tf.reshape(data, [data_shape[0], nodes])
#最后全连接层
with tf.variable_scope('layer-fc'):
fc_weights = tf.get_variable("weight",
[nodes,num_output],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', regularizer(fc_weights))
fc_biases = tf.get_variable("bias", [num_output],
initializer=tf.constant_initializer(0.1))
fc = tf.nn.relu(tf.matmul(reshaped, fc_weights) + fc_biases)
if train:
fc = tf.nn.dropout(fc, 0.5)
return fc
定义传递规则
inference
#堆叠ResNet模块
def inference(input_tensor, #数据入口
demos, #模型资料(list)
num_output, #出口数量
is_train):
data = input_tensor #第一层卷积7*7,stride = 2,深度为64
data = conv2d_same(data,64,7,2,is_train,None,normalizer_fn = False)
data = slim.max_pool2d(data,3,2,scope="pool_1")
with tf.variable_scope("resnet"): #堆叠总类瓶颈模块
demo_num = 0
for demo in demos:
demo_num += 1
print("--------------------------------------------") #堆叠子类瓶颈模块
for i in range(demo["num_class"]):
print(demo_num)
if demo_num is not 4:
if i == demo["num_class"] - 1:
stride = 2
else:
stride = 1
else:
stride = 1
data = bottleneck(data,demo["depth"],stride,is_train)
print("--------------------------------------------")
data = tf.layers.batch_normalization(data,training=is_train)
data = tf.nn.relu(data) #平均池化,也可用Avg_pool函数
data = tf.reduce_mean(data, [1, 2], keep_dims=True)
print("output : ", data) #最后全连接层
data = slim.conv2d(data,num_output,1,activation_fn=None)
data_shape = data.get_shape().as_list()
nodes = data_shape[1] * data_shape[2] * data_shape[3]
data = tf.reshape(data, [-1, nodes])
return data
inference调用方式
inference(input_tensor = 数据入口 demos = ResNet_demo["layer_101"], #获取模型词典 num_output = 出口数量, is_train = False) # BN是否被训练
参考文献:
https://arxiv.org/pdf/1512.03385.pdf
http://blog.csdn.net/xxy0118/article/details/78324256
http://blog.csdn.net/mao_feng/article/details/52734438
使用介绍
图片分类以及目录结构
Snip20181114_1.png
第一步、运行FlowIO.py
image.png
第二步、运行train.py 训练模型 我这里图片少,训练的次数也少,真实情况要大量训练
image.png
第三步、运行Evaluation.py,测试结果集,可跳过
选择正确的模型:
正确的模型.png
第四步、使用模型useModel.py,进行图片识别
image.png
结果是对的!!!
请忽略我的结果,因为我只有8张训练集,这个每类最少要80张训练集。
稍后我多下些训练集试试
相关推荐
- u盘安装win7系统到固态(u盘安装系统到固态硬盘)
-
1.进入bios设置,查看你的本本是否可以直接设置硬盘顺序。可以的话设置下,然后固态硬盘安装win7即可。2.接硬盘数据线注意顺序,固态硬盘接前面,数值小的端口。根据你的情况如果接口一样,可以交换2条...
- 优盘启动盘重装系统进入bios
-
原因分析:开机时直接进入BIOS的主要原因是主办BIOS的设置出现了问题。有些电脑的主板在设置的时候为了能够更加人性化所以加入了许多其他的功能。当BIOS的设置不正确时重启电脑就会自动进入BIOS。解...
- usb系统盘下载(系统u盘之家)
-
手机不可以下载电脑系统到U盘里,这是跟系统文件的格式有直接关系。电脑的系统文件,它在下载安装的时候必须使用电脑版本的U盘才可以正确安装。手机的版本它和电脑的版本差别比较大,即使下载后也不可能正确安装。...
- windows8模拟器(国内版)(win8模拟器安卓版下载)
-
雷电模拟器能在win8系统运行,1、官网下载雷电模拟器,双击安装包进入安装界面。2、点击“自定义安装”修改安装路径,点击“浏览”选择好要安装的路径,默认勾选“已同意”,最后点击“立即安装”。...
- win10安装专业版还是家庭版(win10安装专业版还是家庭版好)
-
从Win10家庭版和专业版对比来看,Win10专业版要比家庭版功能更强大一些,不过价格更贵。另外Win10专业版的一系列Win10增强技术对于普通用户也基本用不到,多了也显得系统不那么精简,因此普通个...
- win10系统保护不见了(win10系统保护打不开怎么办)
-
1、启动计算机,启动到Windows10开机LOGO时就按住电源键强制关机,重复强制关机3次!2、重复步骤3次左右启动后出现“自动修复”界面,我们点击高级选项进入;3、接下来会到选择一个选项界面...
- 新手如何重装win8(怎么重新装系统win8)
-
要想重装回win8.1系统,首先你需要一个win8.1的系统安装盘,然后把你电脑的系统盘格式化一下,或者把你的win10系统删除了,再把win8.1系统安装盘插到电脑上,进行系统安装,等电脑安装系统完...
- 磁盘分区工具软件(硬盘分区工具软件)
-
如果说最安全的那就用电脑自带的吧,右键我的电脑,找到管理,然后进去磁盘管理,然后找到目前的一个磁盘,右键压缩卷,输入压缩空间就是你想要的一个盘的大小(1G=1024MB),然后压缩,然后找到你压缩出来...
- ftp手机客户端(ftp手机客户端存文件)
-
要想实现FTP文件传输,必须在相连的两端都装有支持FTP协议的软件,装在您的电脑上的叫FTP客户端软件,装在另一端服务器上的叫做FTP服务器端软件。 客户端FTP软件使用方法很简单,启动后首先要与...
- 原版xp系统镜像(原版xp系统镜像怎么设置)
-
msdnitellyou又可以上了,那里有。 制作需要的软件 在开始进行制作之前,我们首先需要下载几个软件,启动光盘制作工具:EasyBoot,UltraISO以及用来对制作好的ISO镜像进行测...
- office2007密钥 office2016(office2007ultimate密钥)
-
word2016激活密钥有两种类型:永久激活码和KMS期限激活密钥。其中,永久激活密钥可以使用批量授权版永久激活密钥进行激活,如所示;而KMS期限激活密钥需要使用KMS客户端密钥进行激活,如所示。另外...
- windows10系统启动盘制作(windows10启动盘制作教程)
-
Windows10系统更改启动磁盘的方法如下1、按快捷键Win+R,调出命令窗口2、输入msconfig,点【确定】3、在系统配置中,选择【引导】菜单4、选择要默认启动的磁盘,点【设置为默认值】,...
- 方正电脑怎么重装系统
-
购买一张系统盘,然后启动电脑,将购买的系统盘插入电脑光驱中,等待光驱读取系统盘后,点击安装系统,即可自动安装,等待安装完毕,电脑会自动重启,重新启动后,电脑的系统就安装完毕,可以使用了一、准备需要的软...
-
- qq邮箱怎么写才正确
-
步骤/方式1一般默认的QQ邮箱格式是:QQ号码@qq.com,即QQ账号+@qq.com后缀步骤/方式2若要发送邮件,也要在对方的qq帐号末尾加上@qq.com1.每个人在注册QQ时都会有关联的一个邮箱,它的格式就是“QQ号码@qq.com...
-
2025-12-21 18:51 off999
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
系统u盘安装(win11系统u盘安装)
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
