Python 使用 Matplotlib 绘图详解
off999 2024-10-12 06:09 14 浏览 0 评论
Matplotlib 的简单使用
Matplotlib 是 Python 中一个非常实用的模块,使用 Matplotlib 可以绘制各式各样的图标。包括折线图、条形图、饼图、雷达图等。Matplotlib 是仿照 MATLAB 实现的,想要在 Python 中使用 Matplotlib 我们需要安装它,语句如下:
pip install matplotlib
下面我们用 Matplotlib 来实现一个简单的折线图:
import numpy as np
import matplotlib.pyplot as plt
# 准备 X 轴的数据
x = np.linspace(0, 10, 10)
# 准备 y 轴的数据
y = x**2
# 获取折线图
plt.plot(x, y)
# 显示折线图
plt.show()
在上面的代码中我们使用到了 NumPy 和 matplotlib.pyplot 库。其中 NumPy 是一个数学运算的库,它会在我们安装 Matplotlib 时安装。而 pyplot 是 Matplotlib 的子库,绘图的操作主要都在里面。
在绘制图表时,我们需要先准备 x 和 y 轴的数据。然后调用 plt.plot 函数绘制图表,最后调用 plt.show 函数显示图表,下面是我们绘制的图表:
不过上面的图表过于单调,你无法从里面获取准确的信息,因此需要我们丰富一下图表。
绘制折线图并丰富信息
添加标题、x 轴、y 轴信息
在 plot 中提供了一个函数用于添加标题、x 轴和 y 轴的信息。我们用第一节的代码进行一下扩展:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 10, 10)
y = x**2
plt.plot(x, y)
# 添加标题
plt.title("y = x^2")
# 添加 x 轴的信息
plt.xlabel("x")
# 添加 y 轴的信息
plt.ylabel("y")
# 保存图片
plt.savefig('1.jpg')
plt.show()
我们在调用 plt.plot 函数后又调用了三个函数,分别是 title、xlabel、ylabel。正好对应了我们的标题、x 轴和 y 轴。这样我们的图表就更容易理解,下面是绘制的图表:
从图可以看出,它是 y = x^2 的函数图像。
现在有了一些提示信息,我们可以考虑美化一个图表了。
丰富样式
我们在前面的基础上继续修改:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 10, 10)
y = x**2
# 使用背景
plt.style.use('ggplot')
# 丰富样式
plt.plot(x, y, c='r', marker='o', ls='-', )
plt.title("y = x^2")
plt.xlabel("x")
plt.ylabel("y")
plt.savefig('1.jpg')
plt.show()
在上面我们对两个部分进行了修改,首先我们在绘制图表前调用了:
plt.style.use('ggplot')
这个操作是使用 Matplotlib 中自带的样式,我们可以通过:
plt.style.available
来查看可选的样式。
第二部分是在绘制图表时添加了几个参数,它们的含义分别如下:
c 颜色
marker 点的样式
ls 线条样式
最后绘制出来的图表如下:
可以看到在样式上有了很大的改观。当然,我们的 Matplotlib 还可以绘制其它图。
绘制散点图
散点图的绘制和折线图很像,我们直接来看代码:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 10, 10)
y = x**2
plt.style.use('ggplot')
# 绘制散点图
plt.scatter(x, y, c='r', marker='o', ls='-', )
plt.title("y = x^2")
plt.xlabel("x")
plt.ylabel("y")
plt.savefig('1.jpg')
plt.show()
可以看到,我们的代码只做了非常简单的修改。我们把原本绘制折线图的函数 plt.plot 换成了 plt.scatter。其余代码直接照搬,这就是我们散点图的绘制,我们先看看绘制出来的图片:
可以看到散点图正确的绘制出来了。我们可以尝试绘制其它样式的散点图:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 10, 10)
y = x**2
plt.style.use('ggplot')
plt.scatter(x, y, c='b', marker='*')
plt.title("y = x^2")
plt.xlabel("x")
plt.ylabel("y")
plt.savefig('1.jpg')
plt.show()
上面我调整了一个标记颜色和点的样式,绘制出来的图表如下:
绘制饼图和条形图
除了上面两种,Matplotlib 还可以绘制饼图和统计图。它们的绘制也非常简单:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 10, 10)
y = [10, 3, 4, 7, 9, 3, 11, 23, 3, 17]
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.style.use('ggplot')
plt.bar(x, y, color='b', tick_label=['01', '02', '03', '04', '05', '06', '07', '08', '09', '10'])
plt.title("一个测试统计图")
plt.xlabel("年份")
plt.ylabel("y 值")
plt.savefig('1.jpg')
plt.show()
这里我们多加了一些内容,我们来分别看看。首先第一个是:
plt.rcParams['font.sans-serif'] = ['SimHei']
这句代码的作用是让我们的图表可以显示中文,默认情况下我们显示中文是会乱码的。
第二部分,我们把绘制图表的函数换成了 plt.bar,而且参数也有些改变,含义如下:
color : 颜色
tick_label : x 轴的标签
后面的内容和之前一样,下面是我们图表的效果图:
有了中文标题,我们就能更方便的表示图表了。
不过有时候我们一张图里面可能会包含两组数据,这个时候我们可以使用图例来进行区分:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(10)
y1 = [10, 3, 4, 7, 9, 3, 11, 23, 3, 17]
y2 = [3, 4, 7, 9, 12, 16, 16, 17, 23, 17]
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.style.use('ggplot')
bar_width = 0.35
tick_label = ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10']
plt.bar(x, y1, bar_width, color='b', label='data1')
plt.bar(x+bar_width, y2, bar_width, color='r', label='data2')
plt.legend()
plt.xticks(x+bar_width/2, tick_label)
plt.title("一个测试统计图")
plt.xlabel("年份")
plt.ylabel("y 值")
plt.savefig('1.jpg')
plt.show()
这次我们为绘制了两次条形图,为了不让它们重合,我们把 x 轴添加了一个 bar_width。并且为每个条形图添加了一个 label 参数,这个参数就是会在图例中显示的内容。然后我们调用 legend 函数就能为图片添加图例了,下面是效果图:
左上角显示的就是我们的图例信息。
接下来我们再看看饼图的绘制吧:
import matplotlib.pyplot as plt
data = [0.2, 0.1, 0.05, 0.25, 0.4]
colors = ['#ee0000', '#0000ee', '#777777', '#00ee00', '#eeee00']
kinds = ['data1', 'data2', 'data3', 'data4', 'data5']
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.style.use('ggplot')
plt.pie(data, labels=kinds, colors=colors)
plt.title("一个测试统计图")
plt.xlabel("年份")
plt.ylabel("y 值")
plt.savefig('1.jpg')
plt.show()
这里同样需要修改 plt 的绘制函数,这次使用的是 pie 函数。不同的图需要的参数也不同,这次我们需要的参数主要有:
x : 数据
labels : 每个数据的标签
colors : 每个数据显示的颜色
下面是我们效果图:
当然了,Matplotlib 中提供了图像远不止这些,更多的内容可以自己尝试一下,本次 Chat 就到这里了。
作者:ZackSock
链接:https://juejin.cn/post/7063084556693274661
相关推荐
- 每天一个 Python 库:datetime 模块全攻略,时间操作太丝滑!
-
在日常开发中,时间处理是绕不开的一块,比如:生成时间戳比较两个时间差转换为可读格式接口传参/前端展示/日志记录今天我们就用一个案例+代码+思维导图,带你完全搞定datetime模块的用法!...
- 字节跳动!2023全套Python入门笔记合集
-
学完python出来,已经工作3年啦,最近有很多小伙伴问我,学习python有什么用其实能做的有很多可以提高工作效率增强逻辑思维还能做爬虫网站数据分析等等!!最近也是整理了很多适合零基...
- 为什么你觉得Matplotlib用起来困难?因为你还没看过这个思维导图
-
前言Matplotlib是一个流行的Python库,可以很容易地用于创建数据可视化。然而,设置数据、参数、图形和绘图在每次执行新项目时都可能变得非常混乱和繁琐。而且由于应用不同,我们不知道选择哪一个图...
- Python新手必看!30分钟搞懂break/continue(附5个实战案例)
-
一、跳转语句的使命当程序需要提前结束循环或跳过特定迭代时,break和continue就是你的代码急刹按钮和跳步指令。就像在迷宫探险中:break=发现出口立即离开continue=跳过陷阱继续前进二...
- 刘心向学(24)Python中的数据类(python中5种简单的数据类型)
-
分享兴趣,传播快乐,增长见闻,留下美好!亲爱的您,这里是LearningYard新学苑。今天小编为大家带来文章“刘心向学(24)Python中的数据类”欢迎您的访问。Shareinterest,...
- 刘心向学(25)Python中的虚拟环境(python虚拟环境安装和配置)
-
分享兴趣,传播快乐,增长见闻,留下美好!亲爱的您,这里是LearningYard新学苑。今天小编为大家带来文章“刘心向学(25)Python中的虚拟环境”欢迎您的访问。Shareinte...
- 栋察宇宙(八):Python 中的 wordcloud 库学习介绍
-
分享乐趣,传播快乐,增长见识,留下美好。亲爱的您,这里是LearingYard学苑!今天小编为大家带来“Python中的wordcloud库学习介绍”欢迎您的访问!Sharethefun,...
- AI在用|ChatGPT、Claude 3助攻,1分钟GET高颜值思维导图
-
机器之能报道编辑:Cardinal以大模型、AIGC为代表的人工智能浪潮已经在悄然改变着我们生活及工作方式,但绝大部分人依然不知道该如何使用。因此,我们推出了「AI在用」专栏,通过直观、有趣且简洁的人...
- 使用DeepSeek + Python开发AI思维导图应用,非常强!
-
最近基于Deepseek+PythonWeb技术开发了一个AI对话自动生成思维导图的应用,用来展示下如何基于低门槛的Python相关技术栈,高效结合deepseek实现从应用场景到实际应用的快速落地...
- 10幅思维导图告诉你 - Python 核心知识体系
-
首先,按顺序依次展示了以下内容的一系列思维导图:基础知识,数据类型(数字,字符串,列表,元组,字典,集合),条件&循环,文件对象,错误&异常,函数,模块,面向对象编程;接着,结合这些思维导图主要参考的...
- Python基础核心思维导图,让你轻松入门
-
Python基础核心思维导图【高清图文末获取】学习路线图就给大家看到这里了,需要的小伙伴下方获取获取方式看下方图片...
- Python基础核心思维导图,学会事半功倍
-
Python基础核心思维导图【高清图文末获取】学习路线图就给大家看到这里了,需要的小伙伴下方获取获取方式看下方图片...
- 硬核!288页Python核心知识笔记(附思维导图,建议收藏)
-
今天就给大家分享一份288页Python核心知识笔记,相较于部分朋友乱糟糟的笔记,这份笔记更够系统地总结相关知识,巩固Python知识体系。文末获取完整版PDF该笔记学习思维导图:目录内容展示【领取方...
- Python学习知识思维导图(高效学习)
-
Python学习知识思维导图python基础知识python数据类型条件循环列表元组字典集合字符串序列函数面向对象编程模块错误异常文件对象#python##python自学##编程#...
- 别找了!288页Python核心知识笔记(附思维导图,建议收藏)
-
今天就给大家分享一份288页Python核心知识笔记,相较于部分朋友乱糟糟的笔记,这份笔记更够系统地总结相关知识,巩固Python知识体系。文末获取完整版PDF该笔记学习思维导图:目录内容展示【领取方...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 每天一个 Python 库:datetime 模块全攻略,时间操作太丝滑!
- 字节跳动!2023全套Python入门笔记合集
- 为什么你觉得Matplotlib用起来困难?因为你还没看过这个思维导图
- Python新手必看!30分钟搞懂break/continue(附5个实战案例)
- 刘心向学(24)Python中的数据类(python中5种简单的数据类型)
- 刘心向学(25)Python中的虚拟环境(python虚拟环境安装和配置)
- 栋察宇宙(八):Python 中的 wordcloud 库学习介绍
- AI在用|ChatGPT、Claude 3助攻,1分钟GET高颜值思维导图
- 使用DeepSeek + Python开发AI思维导图应用,非常强!
- 10幅思维导图告诉你 - Python 核心知识体系
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)