Python自动化面试常见的编程题及答案
off999 2024-10-12 06:13 33 浏览 0 评论
前言
随着行业的发展,编程能力逐渐成为软件测试从业人员的一项基本能力。因此在笔试和面试中常常会有一定量的编码题,主要考察以下几点。
- 基本编码能力及思维逻辑
- 基本数据结构(顺序表、链表、队列、栈、二叉树)
- 基本算法(排序、查找、递归)及时间复杂度
除基本算法之外,笔试面试中经常会考察以下三种思想:
- 哈希
- 递归
- 分治
哈希
哈希即Python中的映射类型,字典和集合,键值唯一,查找效率高,序列(列表、元祖、字符串)的元素查找时间复杂度是O(n),而字典和集合的查找只需要O(1)。
因此哈希在列表问题中主要有两种作用:
- 去重
- 优化查找效率
列表去重
列表去重在不考虑顺序的情况下可以直接使用set()转换(转换后会自动排序),需要保持顺序可以使用字典构建的fromkeys()方法,利用字典键值的唯一性去重。
不考虑顺序:
l = [2,1,2,3,4,5,6,6,5,4,3,2,1]
result = list(set(l))
print(result)
运行结果:
[1, 2, 3, 4, 5, 6]
考虑顺序:
l = [2,1,2,3,4,5,6,6,5,4,3,2,1]
result = list({}.fromkeys(l).keys())
print(result)
运行结果:
[2, 1, 3, 4, 5, 6]
列表分组
一串字母数字组合的字符串,找出相同的字母或数字,并按照个数排序。
l = [1,2,3,'a','b','c',1,2,'a','b',3,'c','d','a','b',1]
set1 = set(l)
result = [(item, l.count(item)) for item in set1]
result.sort(key=lambda x:x[1], reverse=True)
print(result)
这里使用哈希的键值不重复性。当然也可以使用python自带的groupby函数,代码如下:
from itertools import groupby
l = [1,2,3,'a','b','c',1,2,'a','b',3,'c','d','a','b',1]
l.sort(key=lambda x: str(x)) # 分组前需要先排序
result = []
for item, group in groupby(l, key=lambda x: str(x)):
result.append((item, len(list(group))))
result.sort(key=lambda x:x[1], reverse=True)
print(result)
海量数据top K
对于小数据量可以使用排序+切片,而对于海量数据,需要考虑服务器硬件条件。即要考虑时间效率,也要考虑内存占用,同时还要考虑数据特征。如果大量的重复数据,可以先用哈希进行去重来降低数据量。
这里我们使用生成器生成1000万个随机整数,求最大的1000个数,生成随机数的代码如下:
import random
import time
n = 10000 * 1000
k = 1000
print(n)
def gen_num(n):
for i in range(n):
yield random.randint(0, n)
l = gen_num(n)
- 不限内存可以直接使用set()去重+排序
start = time.time()
l = list(set(l))
result = l[-k:]
result.reverse()
print(time.time()-start)
1000w个数据会全部读入内存,set后列表自动为递增顺序,使用切片取-1000到最后的即为top 1000的数
- 使用堆排可以节省一些内存
start = time.time()
result = heapq.nlargest(k, l)
print(time.time()-start)
这里是用来Python自带的堆排库heapq。使用nlargest(k,l)可以取到l序列,最大的k个数。
- 较小内存可以分治策略,使用多线程对数据进行分组处理(略)
两数之和
l=[1,2,3,4,5,6,7,8] 数据不重复,target=6,快速找出数组中两个元素之和等于target 的数组下标。
注意,不要使用双重循环,暴力加和来和target对比,正确的做法是单层循环,然后查找target与当前值的差,是否存在于列表中。
但是由于列表的in查询时间复杂度是O(n),即隐含了一层循环,这样效率其实和双重循环是一样的,都是O(n^2)。
这里就可以使用哈希来优化查询差值是否在列表中操作,将O(n)降为O(1),因此总体的效率就会变成O(n^2)->O(n)。
l = [1,2,3,4,5,6,7,8]
set1 = set(list1) # 使用集合已方便查找
target = 6
result = []
for a in list1:
b = target - a
if a < b < target and b in set1: # 在集合中查找,为避免重复,判断a为较小的那个值
result.append((list1.index(a), list1.index(b))) # 列表index取下标的操作为O(1)
print(result)
递归问题
递归是一种循环调用自身的函数。可以用于解决以下高频问题:
- 阶乘
- 斐波那切数列
- 跳台阶、变态跳台阶
- 快速排序
- 二分查找
- 二叉树深度遍历(前序、中序、后序)
- 求二叉树深度
- 平衡二叉树判断
- 判断两颗树是否相同
递归是一种分层推导解决问题的方法,是一种非常重要的解决问题的思想。递归可快速将问题层级化,简单化,只需要考虑出口和每层的推导即可。
如阶乘,要想求n!,只需要知道前一个数的阶乘(n-1)!,然后乘以n即可,因此问题可以转为求上一个数的阶乘,依次向前,直到第一个数。
举个通俗的例子:
A欠你10万,但是他没那么多钱,B欠A 8万,C欠B 7万 C现在有钱。因此你要逐层找到C,一层一层还钱,最后你才能拿到属于你的10万。
编写递归函数有两个要点:
- 出口条件,可以不止一个
- 推导方法(已知上一个结果怎么推导当前结果)
阶乘
求n的阶乘
- 出口:n = 1 时,返回1
- 推导:(n-1)层的结果 * n
代码如下:
def factorial(n):
if n == 1: # 出口
return 1
return factorial(n-1) * n # 自我调用求上一个结果,然后推导本层结果
也可以简写为 factorial = lambda n: 1 if n==1 else factorial(n-1) * n
斐波那切数列
斐波那切数列是 1 1 2 3 5 8 ...这样的序列。前两个数为1,后面的数为前两个数之和。
- 出口:n <= 2,返回1
- 推导:(n-1)层的结果 + (n-2)层的结果
代码如下:
def fib(n):
if n<=2:
return 1
return fib(n-2) + fib(n-1)
递归是一种分层简化问题的解法,但不一定是效率最高的解法,比如斐波那切数列中,在求fib(n-2) 和 fib(n-1)时实际上反复求解了两次fib(n-2)。
可以通过缓存来优化效率,代码如下。
from functools import lru_cache
@lru_cache()
def fib(n):
if n<=2:
return 1
return fib(n-2) + fib(n-1)
跳台阶、变态跳台阶
- 跳台阶:一只青蛙,一次可以跳上1阶,也可以跳上2阶,问跳上n阶有多少种跳法。
- 变态跳台阶:一只青蛙,一次可以跳上1阶,可以一次跳上n阶,为跳上n阶有多少种跳法。
这个问题关键是逻辑分析每层的推导过程。
跳台阶实际上就是一个从第二位开始的斐波那切数列:1 2 3 5 8 13 ...
- 出口:n <= 2,返回n(即1时返回1,2时返回2)
- 推导:(n-1)层的结果 + (n-2)层的结果
代码如下:
jump1 = lambda n: n if n<=2 else jump1(n-2) + jump1(n-1)
变态跳台阶只是推导方式不同,每一层的结果是上一层跳法的2倍。
- 出口:n <= 2,返回n
- 推导:(n-1)层的结果 * 2
代码如下:
jump2 = lambda n: n if n<=2 else jump2(n-1) * 2
快速排序
快速排序的是想是选一个基准数(如第一个数),将大于该数和小于该数的分成两块,然后在每一块中重复执行此操作,直到该块中只有一个数,即为有序。
- 出口:列表长度为1(<2)时,返回列表
- 选择一个数,(将小于该数的序列)排序结果 + 基准数 + (大于该数的序列)排序结果
def quick_sort(l):
length = len(l)
if len(l) <=1:
return l
mid = 0
low_part = [i for i in l[1:] if i < l[mid]]
eq_part = [i for i in l[1:] if i == l[mid]]
high_part = [i for i in l[1:] if i > l[mid]]
return quick_sort(low_part) + eq_part + quick_sort(high_part)
二分查找
二分查找需要序列首先有序。思想是先用序列中间数和目标值对比,如果目标值小,则从前半部分(小于中间数)重复此查找,否则从后半部分重复此查找。
- 出口1:中间数和目标数相同,返回中间数下标
- 出口2:列表为空,返回未找到
- 推导:
def bin_search(l, n):
if not l:
return None
mid = len(l) // 2
if l[mid] == n:
return mid
if l[mid] > n:
return bin_search(l[:mid])
return bin_search(l[mid+1:])
二叉树遍历
二叉树是非常常考的一种数据结构。其基本结构就是一个包含数据和左右节点的一种结构,使用Python类描述如下:
class Node(object):
def __init__(self, data, left=None, right=None):
self.data = data
self.left = left
self.right = right
二叉树的遍历分为分层遍历(广度优先)和深度遍历(深度优先)两种,其中深度遍历又分为前序、中序、后序三种。
分层遍历由于每次处理多个节点,使用循环解决更加方便一点(也可以是使用递归解决)。
分层遍历代码如下:
def lookup(root):
row = [root]
while(row):
print(row)
row = [kid for item in row for kid in (item.left, item.right) if kid]
深度遍历
- 出口:节点为None
- 推导:
- 前序:打印当前节点-》遍历左子树 -》遍历右子树
- 中序:遍历左子树 -》打印当前节点-》遍历右子树
- 后序:遍历左子树 -》遍历右子树-》打印当前节点
以前序为例:
def deep(root):
if root is none:
return
[print(root.data), deep(root.left), deep(root.right)]
二叉树最大深度
二叉树最大深度即其左子树深度和右子树深度中最大的一个加上1(当前节点)。由于二叉树的每一个左右节点都是一个二叉树,这种层层嵌套的结构非常适合使用递归求解。
- 出口:节点为空,深度返回0
- 推导:左子树深度和右子树深度中最大的一个 + 1
def max_depth(root):
if not root:
return 0
return max([max_depth(root.left), max_depth(root.right)]) + 1
相等二叉树判断
相等二叉树是只,一个二叉树,节点数据相同,左右子树也完全相同。由于左右子树也是一个二叉树,因此也可以使用递归求解。如果大家对Python感兴趣的话,可以加一下我们的学习交流抠抠群哦:649,825,285,免费领取一套学习资料和视频课程哟~
- 出口:最后的节点都为None时,两个相等,返回True
- 推导:判断两个节点数据是否相等,左子树是否相等(递归),右子树是否相等(递归)
def is_same_tree(p, q):
if p is None and q is None:
return True
elif p and q:
return p.data == q.data and is_same_tree(p.left, q.left) and is_same_tree(p.right, q.right)
平衡二叉树判断
平衡二叉树是指,一个二叉树的左右子树的高度差不超过1。平衡二叉树的左右子树也应该是平衡二叉树,因此这也是一个递归问题。
- 出口:两个节点都为None时,返回True(平衡)
- 判断左子树和右子树深度的差<=1,并且左右子树都是平衡二叉树(递归)
注:这里需要使用以上求二叉树深度的方法
def max_depth(root):
if not root:
return 0
return max([max_depth(root.left), max_depth(root.right)]) + 1
def is_balance_tree(root):
if root is None:
return True
return abs(max_depth(root.left)-max_depth(root.right))<=1 and is_balance_tree(root.left) and is_balance_tree(root.right)
相关推荐
- 全网第一个讲清楚CPK如何计算的Step by stepExcel和Python同时实现
-
在网上搜索CPK的计算方法,几乎全是照搬教材的公式,在实际工作做作用不大,甚至误导人。比如这个又比如这个:CPK=min((X-LSL/3s),(USL-X/3s))还有这个,很规范的公式,也很清晰很...
- [R语言] R语言快速入门教程(r语言基础操作)
-
本文主要是为了从零开始学习和理解R语言,简要介绍了该语言的最重要部分,以快速入门。主要参考文章:R-TutorialR语言程序的编写需要安装R或RStudio,通常是在RStudio中键入代码。但是R...
- Python第123题:计算直角三角形底边斜边【PythonTip题库300题】
-
1、编程试题:编写一个程序,找出已知面积和高的直角三角形的另外两边(底边及斜边)。定义函数find_missing_sides(),有两个参数:area(面积)和height(高)。在函数内,计算另外...
- Tensor:Pytorch神经网络界的Numpy
-
TensorTensor,它可以是0维、一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便。但它们也不相同,最大的区别就是Numpy...
- python多进程编程(python多进程进程池)
-
forkwindows中是没有fork函数的,一开始直接在Windows中测试,直接报错importosimporttimeret=os.fork()ifret==0:...
- 原来Python的协程有2种实现方式(python协程模型)
-
什么是协程在Python中,协程(Coroutine)是一种轻量级的并发编程方式,可以通过协作式多任务来实现高效的并发执行。协程是一种特殊的生成器函数,通过使用yield关键字来挂起函数的执行...
- ob混淆加密解密,新版大众点评加密解密
-
1目标:新版大众点评接口参数_token加密解密数据获取:所有教育培训机构联系方式获取难点:objs混淆2打开大众点评网站,点击教育全部,打开页面,切换到mobile模式,才能找到接口。打开开发者工具...
- python并发编程-同步锁(python并发和并行)
-
需要注意的点:1.线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻...
- 10分钟学会Python基础知识(python基础讲解)
-
看完本文大概需要8分钟,看完后,仔细看下代码,认真回一下,函数基本知识就OK了。最好还是把代码敲一下。一、函数基础简单地说,一个函数就是一组Python语句的组合,它们可以在程序中运行一次或多次运行。...
- Python最常见的170道面试题全解析答案(二)
-
60.请写一个Python逻辑,计算一个文件中的大写字母数量答:withopen(‘A.txt’)asfs:count=0foriinfs.read():ifi.isupper...
- Python 如何通过 threading 模块实现多线程。
-
先熟悉下相关概念多线程是并发编程的一种方式,多线程在CPU密集型任务中无法充分利用多核性能,但在I/O操作(如文件读写、网络请求)等待期间,线程会释放GIL,此时其他线程可以运行。GIL是P...
- Python的设计模式单例模式(python 单例)
-
单例模式,简单的说就是确保只有一个实例,我们知道,通常情况下类其实可以有很多实例,我们这么来保证唯一呢,全局访问。如配置管理、数据库连接池、日志处理器等。classSingleton: ...
- 更安全的加密工具:bcrypt(bcrypt加密在线)
-
作为程序员在开发工作中经常会使用加密算法,比如,密码、敏感数据等。初学者经常使用md5等方式对数据进行加密,但是作为严谨开发的程序员,需要掌握一些相对安全的加密方式,今天给大家介绍下我我在工作中使用到...
- 一篇文章搞懂Python协程(python协程用法)
-
前引之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把cpu的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线...
- Python开发必会的5个线程安全技巧
-
点赞、收藏、加关注,下次找我不迷路一、啥是线程安全?假设你开了一家包子铺,店里有个公共的蒸笼,里面放着刚蒸好的包子。现在有三个顾客同时来拿包子,要是每个人都随便伸手去拿,会不会出现混乱?比如第一个顾...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)