Python自动化面试常见的编程题及答案
off999 2024-10-12 06:13 52 浏览 0 评论
前言
随着行业的发展,编程能力逐渐成为软件测试从业人员的一项基本能力。因此在笔试和面试中常常会有一定量的编码题,主要考察以下几点。
- 基本编码能力及思维逻辑
- 基本数据结构(顺序表、链表、队列、栈、二叉树)
- 基本算法(排序、查找、递归)及时间复杂度
除基本算法之外,笔试面试中经常会考察以下三种思想:
- 哈希
- 递归
- 分治
哈希
哈希即Python中的映射类型,字典和集合,键值唯一,查找效率高,序列(列表、元祖、字符串)的元素查找时间复杂度是O(n),而字典和集合的查找只需要O(1)。
因此哈希在列表问题中主要有两种作用:
- 去重
- 优化查找效率
列表去重
列表去重在不考虑顺序的情况下可以直接使用set()转换(转换后会自动排序),需要保持顺序可以使用字典构建的fromkeys()方法,利用字典键值的唯一性去重。
不考虑顺序:
l = [2,1,2,3,4,5,6,6,5,4,3,2,1]
result = list(set(l))
print(result)
运行结果:
[1, 2, 3, 4, 5, 6]
考虑顺序:
l = [2,1,2,3,4,5,6,6,5,4,3,2,1]
result = list({}.fromkeys(l).keys())
print(result)
运行结果:
[2, 1, 3, 4, 5, 6]
列表分组
一串字母数字组合的字符串,找出相同的字母或数字,并按照个数排序。
l = [1,2,3,'a','b','c',1,2,'a','b',3,'c','d','a','b',1]
set1 = set(l)
result = [(item, l.count(item)) for item in set1]
result.sort(key=lambda x:x[1], reverse=True)
print(result)
这里使用哈希的键值不重复性。当然也可以使用python自带的groupby函数,代码如下:
from itertools import groupby
l = [1,2,3,'a','b','c',1,2,'a','b',3,'c','d','a','b',1]
l.sort(key=lambda x: str(x)) # 分组前需要先排序
result = []
for item, group in groupby(l, key=lambda x: str(x)):
result.append((item, len(list(group))))
result.sort(key=lambda x:x[1], reverse=True)
print(result)
海量数据top K
对于小数据量可以使用排序+切片,而对于海量数据,需要考虑服务器硬件条件。即要考虑时间效率,也要考虑内存占用,同时还要考虑数据特征。如果大量的重复数据,可以先用哈希进行去重来降低数据量。
这里我们使用生成器生成1000万个随机整数,求最大的1000个数,生成随机数的代码如下:
import random
import time
n = 10000 * 1000
k = 1000
print(n)
def gen_num(n):
for i in range(n):
yield random.randint(0, n)
l = gen_num(n)
- 不限内存可以直接使用set()去重+排序
start = time.time()
l = list(set(l))
result = l[-k:]
result.reverse()
print(time.time()-start)
1000w个数据会全部读入内存,set后列表自动为递增顺序,使用切片取-1000到最后的即为top 1000的数
- 使用堆排可以节省一些内存
start = time.time()
result = heapq.nlargest(k, l)
print(time.time()-start)
这里是用来Python自带的堆排库heapq。使用nlargest(k,l)可以取到l序列,最大的k个数。
- 较小内存可以分治策略,使用多线程对数据进行分组处理(略)
两数之和
l=[1,2,3,4,5,6,7,8] 数据不重复,target=6,快速找出数组中两个元素之和等于target 的数组下标。
注意,不要使用双重循环,暴力加和来和target对比,正确的做法是单层循环,然后查找target与当前值的差,是否存在于列表中。
但是由于列表的in查询时间复杂度是O(n),即隐含了一层循环,这样效率其实和双重循环是一样的,都是O(n^2)。
这里就可以使用哈希来优化查询差值是否在列表中操作,将O(n)降为O(1),因此总体的效率就会变成O(n^2)->O(n)。
l = [1,2,3,4,5,6,7,8]
set1 = set(list1) # 使用集合已方便查找
target = 6
result = []
for a in list1:
b = target - a
if a < b < target and b in set1: # 在集合中查找,为避免重复,判断a为较小的那个值
result.append((list1.index(a), list1.index(b))) # 列表index取下标的操作为O(1)
print(result)
递归问题
递归是一种循环调用自身的函数。可以用于解决以下高频问题:
- 阶乘
- 斐波那切数列
- 跳台阶、变态跳台阶
- 快速排序
- 二分查找
- 二叉树深度遍历(前序、中序、后序)
- 求二叉树深度
- 平衡二叉树判断
- 判断两颗树是否相同
递归是一种分层推导解决问题的方法,是一种非常重要的解决问题的思想。递归可快速将问题层级化,简单化,只需要考虑出口和每层的推导即可。
如阶乘,要想求n!,只需要知道前一个数的阶乘(n-1)!,然后乘以n即可,因此问题可以转为求上一个数的阶乘,依次向前,直到第一个数。
举个通俗的例子:
A欠你10万,但是他没那么多钱,B欠A 8万,C欠B 7万 C现在有钱。因此你要逐层找到C,一层一层还钱,最后你才能拿到属于你的10万。
编写递归函数有两个要点:
- 出口条件,可以不止一个
- 推导方法(已知上一个结果怎么推导当前结果)
阶乘
求n的阶乘
- 出口:n = 1 时,返回1
- 推导:(n-1)层的结果 * n
代码如下:
def factorial(n):
if n == 1: # 出口
return 1
return factorial(n-1) * n # 自我调用求上一个结果,然后推导本层结果
也可以简写为 factorial = lambda n: 1 if n==1 else factorial(n-1) * n
斐波那切数列
斐波那切数列是 1 1 2 3 5 8 ...这样的序列。前两个数为1,后面的数为前两个数之和。
- 出口:n <= 2,返回1
- 推导:(n-1)层的结果 + (n-2)层的结果
代码如下:
def fib(n):
if n<=2:
return 1
return fib(n-2) + fib(n-1)
递归是一种分层简化问题的解法,但不一定是效率最高的解法,比如斐波那切数列中,在求fib(n-2) 和 fib(n-1)时实际上反复求解了两次fib(n-2)。
可以通过缓存来优化效率,代码如下。
from functools import lru_cache
@lru_cache()
def fib(n):
if n<=2:
return 1
return fib(n-2) + fib(n-1)
跳台阶、变态跳台阶
- 跳台阶:一只青蛙,一次可以跳上1阶,也可以跳上2阶,问跳上n阶有多少种跳法。
- 变态跳台阶:一只青蛙,一次可以跳上1阶,可以一次跳上n阶,为跳上n阶有多少种跳法。
这个问题关键是逻辑分析每层的推导过程。
跳台阶实际上就是一个从第二位开始的斐波那切数列:1 2 3 5 8 13 ...
- 出口:n <= 2,返回n(即1时返回1,2时返回2)
- 推导:(n-1)层的结果 + (n-2)层的结果
代码如下:
jump1 = lambda n: n if n<=2 else jump1(n-2) + jump1(n-1)
变态跳台阶只是推导方式不同,每一层的结果是上一层跳法的2倍。
- 出口:n <= 2,返回n
- 推导:(n-1)层的结果 * 2
代码如下:
jump2 = lambda n: n if n<=2 else jump2(n-1) * 2
快速排序
快速排序的是想是选一个基准数(如第一个数),将大于该数和小于该数的分成两块,然后在每一块中重复执行此操作,直到该块中只有一个数,即为有序。
- 出口:列表长度为1(<2)时,返回列表
- 选择一个数,(将小于该数的序列)排序结果 + 基准数 + (大于该数的序列)排序结果
def quick_sort(l):
length = len(l)
if len(l) <=1:
return l
mid = 0
low_part = [i for i in l[1:] if i < l[mid]]
eq_part = [i for i in l[1:] if i == l[mid]]
high_part = [i for i in l[1:] if i > l[mid]]
return quick_sort(low_part) + eq_part + quick_sort(high_part)
二分查找
二分查找需要序列首先有序。思想是先用序列中间数和目标值对比,如果目标值小,则从前半部分(小于中间数)重复此查找,否则从后半部分重复此查找。
- 出口1:中间数和目标数相同,返回中间数下标
- 出口2:列表为空,返回未找到
- 推导:
def bin_search(l, n):
if not l:
return None
mid = len(l) // 2
if l[mid] == n:
return mid
if l[mid] > n:
return bin_search(l[:mid])
return bin_search(l[mid+1:])
二叉树遍历
二叉树是非常常考的一种数据结构。其基本结构就是一个包含数据和左右节点的一种结构,使用Python类描述如下:
class Node(object):
def __init__(self, data, left=None, right=None):
self.data = data
self.left = left
self.right = right
二叉树的遍历分为分层遍历(广度优先)和深度遍历(深度优先)两种,其中深度遍历又分为前序、中序、后序三种。
分层遍历由于每次处理多个节点,使用循环解决更加方便一点(也可以是使用递归解决)。
分层遍历代码如下:
def lookup(root):
row = [root]
while(row):
print(row)
row = [kid for item in row for kid in (item.left, item.right) if kid]
深度遍历
- 出口:节点为None
- 推导:
- 前序:打印当前节点-》遍历左子树 -》遍历右子树
- 中序:遍历左子树 -》打印当前节点-》遍历右子树
- 后序:遍历左子树 -》遍历右子树-》打印当前节点
以前序为例:
def deep(root):
if root is none:
return
[print(root.data), deep(root.left), deep(root.right)]
二叉树最大深度
二叉树最大深度即其左子树深度和右子树深度中最大的一个加上1(当前节点)。由于二叉树的每一个左右节点都是一个二叉树,这种层层嵌套的结构非常适合使用递归求解。
- 出口:节点为空,深度返回0
- 推导:左子树深度和右子树深度中最大的一个 + 1
def max_depth(root):
if not root:
return 0
return max([max_depth(root.left), max_depth(root.right)]) + 1
相等二叉树判断
相等二叉树是只,一个二叉树,节点数据相同,左右子树也完全相同。由于左右子树也是一个二叉树,因此也可以使用递归求解。如果大家对Python感兴趣的话,可以加一下我们的学习交流抠抠群哦:649,825,285,免费领取一套学习资料和视频课程哟~
- 出口:最后的节点都为None时,两个相等,返回True
- 推导:判断两个节点数据是否相等,左子树是否相等(递归),右子树是否相等(递归)
def is_same_tree(p, q):
if p is None and q is None:
return True
elif p and q:
return p.data == q.data and is_same_tree(p.left, q.left) and is_same_tree(p.right, q.right)
平衡二叉树判断
平衡二叉树是指,一个二叉树的左右子树的高度差不超过1。平衡二叉树的左右子树也应该是平衡二叉树,因此这也是一个递归问题。
- 出口:两个节点都为None时,返回True(平衡)
- 判断左子树和右子树深度的差<=1,并且左右子树都是平衡二叉树(递归)
注:这里需要使用以上求二叉树深度的方法
def max_depth(root):
if not root:
return 0
return max([max_depth(root.left), max_depth(root.right)]) + 1
def is_balance_tree(root):
if root is None:
return True
return abs(max_depth(root.left)-max_depth(root.right))<=1 and is_balance_tree(root.left) and is_balance_tree(root.right)
相关推荐
- 安全教育登录入口平台(安全教育登录入口平台官网)
-
122交通安全教育怎么登录:122交通网的注册方法是首先登录网址http://www.122.cn/,接着打开网页后,点击右上角的“个人登录”;其次进入邮箱注册,然后进入到注册页面,输入相关信息即可完...
- 大鱼吃小鱼经典版(大鱼吃小鱼经典版(经典版)官方版)
-
大鱼吃小鱼小鱼吃虾是于谦跟郭麒麟的《我的棒儿呢?》郭德纲说于思洋郭麒麟作诗的相声,最后郭麒麟做了一首,师傅躺在师母身上大鱼吃小鱼小鱼吃虾虾吃水水落石出师傅压师娘师娘压床床压地地动山摇。...
-
- 哪个软件可以免费pdf转ppt(免费的pdf转ppt软件哪个好)
-
要想将ppt免费转换为pdf的话,我们建议大家可以下一个那个wps,如果你是会员的话,可以注册为会员,这样的话,在wps里面的话,就可以免费将ppt呢转换为pdfpdf之后呢,我们就可以直接使用,不需要去直接不需要去另外保存,为什么格式转...
-
2026-02-04 09:03 off999
- 电信宽带测速官网入口(电信宽带测速官网入口app)
-
这个网站看看http://www.swok.cn/pcindex.jsp1.登录中国电信网上营业厅,宽带光纤,贴心服务,宽带测速2.下载第三方软件,如360等。进行在线测速进行宽带测速时,尽...
- 植物大战僵尸95版手机下载(植物大战僵尸95 版下载)
-
1可以在应用商店或者游戏平台上下载植物大战僵尸95版手机游戏。2下载教程:打开应用商店或者游戏平台,搜索“植物大战僵尸95版”,找到游戏后点击下载按钮,等待下载完成即可安装并开始游戏。3注意:确...
- 免费下载ppt成品的网站(ppt成品免费下载的网站有哪些)
-
1、Chuangkit(chuangkit.com)直达地址:chuangkit.com2、Woodo幻灯片(woodo.cn)直达链接:woodo.cn3、OfficePlus(officeplu...
- 2025世界杯赛程表(2025世界杯在哪个国家)
-
2022年卡塔尔世界杯赛程公布,全部比赛在卡塔尔境内8座球场举行,2022年,决赛阶段球队全部确定。揭幕战于当地时间11月20日19时进行,由东道主卡塔尔对阵厄瓜多尔,决赛于当地时间12月18日...
- 下载搜狐视频电视剧(搜狐电视剧下载安装)
-
搜狐视频APP下载好的视频想要导出到手机相册里方法如下1、打开手机搜狐视频软件,进入搜狐视频后我们点击右上角的“查找”,找到自已喜欢的视频。2、在“浏览器页面搜索”窗口中,输入要下载的视频的名称,然后...
- 永久免费听歌网站(丫丫音乐网)
-
可以到《我爱音乐网》《好听音乐网》《一听音乐网》《YYMP3音乐网》还可以到《九天音乐网》永久免费听歌软件有酷狗音乐和天猫精灵,以前要跳舞经常要下载舞曲,我从QQ上找不到舞曲下载就从酷狗音乐上找,大多...
- 音乐格式转换mp3软件(音乐格式转换器免费版)
-
有两种方法:方法一在手机上操作:1、进入手机中的文件管理。2、在其中选择“音乐”,将显示出手机中的全部音乐。3、点击“全选”,选中所有音乐文件。4、点击屏幕右下方的省略号图标,在弹出菜单中选择“...
- 电子书txt下载(免费的最全的小说阅读器)
-
1.Z-library里面收录了近千万本电子书籍,需求量大。2.苦瓜书盘没有广告,不需要账号注册,使用起来非常简单,直接搜索预览下载即可。3.鸠摩搜书整体风格简洁清晰,书籍资源丰富。4.亚马逊图书书籍...
- 最好免费观看高清电影(播放免费的最好看的电影)
-
在目前的网上选择中,IMDb(互联网电影数据库)被认为是最全的电影网站之一。这个网站提供了各种类型的电影和电视节目的海量信息,包括剧情介绍、演员表、评价、评论等。其还提供了有关电影制作背后的详细信息,...
- 孤单枪手2简体中文版(孤单枪手2简体中文版官方下载)
-
要将《孤胆枪手2》游戏的征兵秘籍切换为中文,您可以按照以下步骤进行操作:首先,打开游戏设置选项,通常可以在游戏主菜单或游戏内部找到。然后,寻找语言选项或界面选项,点击进入。在语言选项中,选择中文作为游...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
win7系统还原步骤图解(win7还原电脑系统的步骤)
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
16949认证费用是多少(16949审核员太难考了)
-
linux软件(linux软件图标)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
