Redis 超越缓存,使用 Python 配合
off999 2024-11-04 13:16 34 浏览 0 评论
作为一名Python 开发者, 肯定使用过 Redis , 并且认为它是一个很棒的缓存。 虽然你的印象没有错, Redis 的确是一个很棒的缓存, 但使用 Redis 能够解决的问题并不仅限于缓存。
我们将探索 Redis 和 Redis Enterprise 的一些其他用途。 为了找点乐子, 我将使用之前《 使用 Redis 储存地理位置数据 》一文中的大脚怪(Bigfoot)数据。 此外, 由于这篇文章的读者都是 Python 开发者, 所以我将使用 Python 来编写本文的所有代码!
我在接下来展示的代码中使用了 aioredis 客户端库, 因为它对 async/await 提供了非常棒的支持。 如果你对 async/await 不熟悉的话, 那么可以去看看 这篇文章 , 里面提到了 async/await 对提升性能的帮助。
使用 Redis 构建队列
Redis 提供了字符串、哈希、集合和列表等多种数据结构可供使用。 这些数据结构都是储存数据的好帮手, 其中列表就可以用作一个非常棒的队列(queue)。
为了将列表用作队列, 我们需要使用 RPUSH 将新项目推送至列表末尾, 然后使用 LPOP 或者 BLPOP 将它们从列表的前面弹出。 由于 Redis 对数据库的所有修改都是在单个线程里面完成的, 所以这些操作都是原子的。
作为例子, 下面这段在队列里面添加了一些大脚怪的踪迹。
import asyncio
import aioredis
async def main():
redis = await aioredis.create_redis('redis://:foobared@localhost:6379/0', encoding='utf-8')
await asyncio.gather(
add_to_queue(redis, 'Possible vocalizations east of Makanda'),
add_to_queue(redis, 'Sighting near the Columbia River'),
add_to_queue(redis, 'Chased by a tall hairy creature')
)
redis.close()
await redis.wait_closed()
def add_to_queue(redis, message):
return redis.rpush('bigfoot:sightings:received', message)
asyncio.run(main())这个程序非常直接。 我们只需要在第 18 行调用 redis.rpush , 就能够将指定的元素推入到队列。 接下来是从队列另一端读取元素的代码, 同样非常简单。
import asyncio
import aioredis
from pprint import pp
async def main():
redis = await aioredis.create_redis('redis://:foobared@localhost:6379/0', encoding='utf-8')
while True:
sighting = await redis.blpop('bigfoot:sightings:received')
pp(sighting)
asyncio.run(main())第 11 行和第 12 行的无限循环将等待并且打印被推入至队列中的大脚怪踪迹。 这里使用了 redis.blpop 而不是 redis.lpop , 因为前者可以阻塞客户端并等待列表中的元素返回。 比起让 Redis 和 Python 代码之间的网络无休止地轮询并做无用功, 让客户端阻塞并等待元素出现的做法会高效得多。
Redis 还有 一些同样很酷的命令 , 它们不仅可以将列表用作队列甚至堆栈。 我最喜欢的是 BRPOPLPUSH , 它可以从列表的右侧阻塞并弹出一些元素, 然后将被弹出的元素推入到另一个列表。 你可以使用这个命令来将一个队列中的元素传递至另一个队列, 这是非常棒的一个命令。
使用 Redis 订阅和发送事件
Redis 提供的东西中有些并不是数据结构, 比如订阅与发布(Pub/Sub)特性就是其中之一。 这个特性就像它的名字一样, 是一个内置于 Redis 中的发布与订阅机制。 得益于这个特性, 我们只需要 使用一些命令 就可以在自己的 Python 应用里面添加强大的订阅与发布机制。
通过执行订阅操作可以让我们发现事件, 以下是代码:
import asyncio
import aioredis
from pprint import pp
async def main():
redis = await aioredis.create_redis('redis://:foobared@localhost:6379/0', encoding='utf-8')
[channel] = await redis.psubscribe('bigfoot:broadcast:channel:*')
while True:
message = await channel.get()
pp(message)
asyncio.run(main())因为我想要接收所有跟大脚兽有关的消息, 所以我在这段代码的第 10 行使用 redis.psubscribe 订阅了一个 Glob 风格的模式, 通过使用 bigfoot:broadcast:channel:* 作为模式, 客户端将接收到所有以 bigfoot:broadcast:channel: 开头的事件。
用于匹配模式的 redis.psubscribe 函数和非模式匹配的 redis.subscribe 函数都返回 Python 列表, 以便包含不定数量的元素。 程序将解构这个列表(Python 的术语是解包)以获得我想要的通道, 并在之后使用 .get 进行阻塞调用以等待下一条消息。
发布事件非常简单, 下面是代码:
import asyncio
import aioredis
async def main():
redis = await aioredis.create_redis('redis://:foobared@localhost:6379/0', encoding='utf-8')
await asyncio.gather(
publish(redis, 1, 'Possible vocalizations east of Makanda'),
publish(redis, 2, 'Sighting near the Columbia River'),
publish(redis, 2, 'Chased by a tall hairy creature')
)
redis.close()
await redis.wait_closed()
def publish(redis, channel, message):
return redis.publish(f'bigfoot:broadcast:channel:{channel}', message)
asyncio.run(main())这段代码的重点是第 18 行, 它使用了名字非常直接的 redis.publish 来将消息发布至所需的通道。
值得注意的是, 发布与订阅是一个发送即遗忘机制(fire-and-forget)。 如果代码发布了一个事件但是却没有人监听, 那么该事件就会消失。 如果你想让自己的事件持续存在, 那么可以考虑使用前面提到的队列, 又或者接下来将要介绍的 Redis 流。
使用 Redis 储存数据流
除了发布与订阅之外, Redis 还可以使用流来发布和订阅事件。 Redis 流 是一个非常大的话题, 但使用它只需要 掌握少量命令 。 从 Python 来看, 这些命令的用法都是非常简单的, 我将一一向你说明。
下面的代码将把三次大脚兽的目击事件添加到流里面。
import asyncio
import aioredis
async def main():
redis = await aioredis.create_redis('redis://:foobared@localhost:6379/0', encoding='utf-8')
await asyncio.gather(
add_to_stream(redis, 1, 'Possible vocalizations east of Makanda', 'Class B'),
add_to_stream(redis, 2, 'Sighting near the Columbia River', 'Class A'),
add_to_stream(redis, 3, 'Chased by a tall hairy creature', 'Class A'))
redis.close()
await redis.wait_closed()
def add_to_stream(redis, id, title, classification):
return redis.xadd('bigfoot:sightings:stream', {
'id': id, 'title': title, 'classification': classification })
asyncio.run(main())这段代码中最重要的就是第 17 行和第 18 行, 它使用了 redis.xadd 函数将一次目击事件的字段添加到流里面。
每个新添加的流事件都有一个唯一标识符, 其中包含自 1970 年开始的时间戳(毫秒)和一个用破折号连接的序列号。 例如, 当我写这篇文章的时候, 1970 年 1 月 1 日(Unix纪元)午夜已经过去了 1,593,120,357,193 毫秒(1.59千兆秒)。 因此当我运行上面这段代码的时候, 命令将创建出 ID 为 1593120357193-0 的事件。
我们在添加事件的时候可以使用 * 来代替具体的 ID , 这样 Redis 就会根据当前时间来自动生成事件的 ID , 这也是 redis.xadd 函数的默认行为。
正如接下来的代码所示, 在读取流元素的时候, 我们需要设置一个起始 ID 。 你可以看到, 在第 10 行, 程序将变量 last_id 设置成了 0-0 , 这个 ID 代表流的起始位置。
import asyncio
import aioredis
from pprint import pp
async def main():
redis = await aioredis.create_redis('redis://:foobared@localhost:6379/0', encoding='utf8')
last_id = '0-0'
while True:
events = await redis.xread(['bigfoot:sightings:stream'], timeout=0, count=5, latest_ids=[last_id])
for key, id, fields in events:
pp(fields)
last_id = id
asyncio.run(main())程序的第 12 行使用 redis.xread 函数从流中请求最多 5 个 0-0 之后的事件。 该调用将返回一个列表, 然后程序将对其进行循环和解构, 以获得事件的字段和标识符。 事件的标识符会被储存起来, 以便将来调用 redis.xread 时可以获得新的事件并在有需要时重新读取之前读取过的旧事件。
将 Redis 用作搜索引擎
Redis 可以通过模块(Module)扩展来增加新的命令和功能。 有 大量的模块 可以用于 AI 模型服务、图形数据库、时间序列数据库以及本例中的搜索引擎。
RedisSearch 是一个强大的搜索引擎, 它摄取数据的速度快得惊人。 有些人喜欢用它来进行 瞬时搜索 , 但除此之外它也可以用来进行其他搜索。 下面是使用该模块的一个例子:
import asyncio
import aioredis
from pprint import pp
async def main():
redis = await aioredis.create_redis('redis://:foobared@localhost:6379/0', encoding='utf-8')
await redis.execute('FT.DROP', 'bigfoot:sightings:search')
await redis.execute('FT.CREATE', 'bigfoot:sightings:search',
'SCHEMA', 'title', 'TEXT', 'classification', 'TEXT')
await asyncio.gather(
add_document(redis, 1, 'Possible vocalizations east of Makanda', 'Class B'),
add_document(redis, 2, 'Sighting near the Columbia River', 'Class A'),
add_document(redis, 3, 'Chased by a tall hairy creature', 'Class A'))
results = await search(redis, 'chase|east')
pp(results)
redis.close()
await redis.wait_closed()
def add_document(redis, id, title, classification):
return redis.execute('FT.ADD', 'bigfoot:sightings:search', id, '1.0',
'FIELDS', 'title', title, 'classification', classification)
def search(redis, query):
return redis.execute('FT.SEARCH', 'bigfoot:sightings:search', query)
asyncio.run(main())在第 12 和第 13 行, 程序使用 FT.CREATE 创建了一个索引。 索引需要描述程序将要添加的每个文档中的字段的模式。 在这个例子中, 程序需要添加大脚兽的目击事件, 该文档包含一个标题和一个分类, 并且它们都是文本字段。
在拥有了索引之后, 程序就可以向里面添加文档了, 这一操作发生在程序的第 27 行和第 28 行, 通过 FT.ADD 命令来完成。 每个文档偶读需要一个唯一 ID 、一个介于 0.0 和 1.0 之间的权重(rank)以及相应的字段。
正如程序的第 31 行所示, 在索引加载文档之后, 程序就可以使用 FT.SEARCH 命令和具体的查询语句来执行查询操作。 第 20 行的特定查询指示 RedisSearch 在索引中查找包含这些术语之一的文档。 在这个例子中, 该查询将返回两个文档。
使用 Redis 作为主数据库
Redis 可以作为一个速度奇快的内存存储数据库来使用。 下面的代码使用了哈希来演示这种用法。 哈希是一种非常棒的数据结构, 它可以建模你想要储存的记录类型, 并且能够将数据的主键用作键名的其中一部分。
import asyncio
import aioredis
from pprint import pp
async def main():
redis = await aioredis.create_redis('redis://:foobared@localhost:6379/0', encoding='utf-8')
await asyncio.gather(
add_sighting(redis, 1, 'Possible vocalizations east of Makanda', 'Class B'),
add_sighting(redis, 2, 'Sighting near the Columbia River', 'Class A'),
add_sighting(redis, 3, 'Chased by a tall hairy creature', 'Class A'))
sightings = await asyncio.gather(
read_sighting(redis, 1),
read_sighting(redis, 2),
read_sighting(redis, 3))
pp(sightings)
redis.close()
await redis.wait_closed()
def add_sighting(redis, id, title, classification):
return redis.hmset(f'bigfoot:sighting:{id}',
'id', id, 'title', title, 'classification', classification)
def read_sighting(redis, id):
return redis.hgetall(f'bigfoot:sighting:{id}')
asyncio.run(main())你可能会这样想”如果我把服务器关掉了怎么办?如果它崩溃了怎么办?那我就什么数据都没有了!“ No,不会的! 你可以修改你的 redis.conf 文件, 用几种不同的方式来持久化内存中的数据 。 此外, 如果你使用的是 Redis Enterprise , 我们也有为你提供 相应的解决方案 , 使得你可以直接使用 Redis 而不必担心持久化的问题。
为了方便你亲手尝试这些例子, 我把文中涉及的 所有代码都放到了 GitHub 上面 , 你可以克隆并开始使用它们。 如果你是 Docker 用户, 项目里面也有一个名为 start-redis.sh 的 shell 脚本, 它可以拉取一个镜像, 然后启动一个能够运行这些例子的 Redis 版本。
如果你在玩耍完毕之后想要认真地构建一些软件, 那么可以注册并尝试 Redis Cloud Essentials 。 它和你所熟悉和喜欢的 Redis 一样, 唯一的区别就是这种 Redis 由云端进行管理, 所以你只需要专注于构建你的软件即可。
大家平时学习Python的时候肯定会遇到很多问题,小编我为大家准备了Python学习资料,将这些免费分享给大家!如果想要的可以找我领取
领取方式:
如果想获取这些学习资料,先关注我然后私信小编“01”即可免费领取!(私信方法:点击我头像进我主页右上面有个私信按钮)
如果这篇文章对你有帮助,请记得给我来个评论+转发
相关推荐
- 阿里云国际站ECS:阿里云ECS如何提高网站的访问速度?
-
TG:@yunlaoda360引言:速度即体验,速度即业务在当今数字化的世界中,网站的访问速度已成为决定用户体验、用户留存乃至业务转化率的关键因素。页面加载每延迟一秒,都可能导致用户流失和收入损失。对...
- 高流量大并发Linux TCP性能调优_linux 高并发网络编程
-
其实主要是手里面的跑openvpn服务器。因为并没有明文禁p2p(哎……想想那么多流量好像不跑点p2p也跑不完),所以造成有的时候如果有比较多人跑BT的话,会造成VPN速度急剧下降。本文所面对的情况为...
- 性能测试100集(12)性能指标资源使用率
-
在性能测试中,资源使用率是评估系统硬件效率的关键指标,主要包括以下四类:#性能测试##性能压测策略##软件测试#1.CPU使用率定义:CPU处理任务的时间占比,计算公式为1-空闲时间/总...
- Linux 服务器常见的性能调优_linux高性能服务端编程
-
一、Linux服务器性能调优第一步——先搞懂“看什么”很多人刚接触Linux性能调优时,总想着直接改配置,其实第一步该是“看清楚问题”。就像医生看病要先听诊,调优前得先知道服务器“哪里...
- Nginx性能优化实战:手把手教你提升10倍性能!
-
关注△mikechen△,十余年BAT架构经验倾囊相授!Nginx是大型架构而核心,下面我重点详解Nginx性能@mikechen文章来源:mikechen.cc1.worker_processe...
- 高并发场景下,Spring Cloud Gateway如何抗住百万QPS?
-
关注△mikechen△,十余年BAT架构经验倾囊相授!大家好,我是mikechen。高并发场景下网关作为流量的入口非常重要,下面我重点详解SpringCloudGateway如何抗住百万性能@m...
- Kubernetes 高并发处理实战(可落地案例 + 源码)
-
目标场景:对外提供HTTPAPI的微服务在短时间内收到大量请求(例如每秒数千至数万RPS),要求系统可弹性扩容、限流降级、缓存减压、稳定运行并能自动恢复。总体思路(多层防护):边缘层:云LB...
- 高并发场景下,Nginx如何扛住千万级请求?
-
Nginx是大型架构的必备中间件,下面我重点详解Nginx如何实现高并发@mikechen文章来源:mikechen.cc事件驱动模型Nginx采用事件驱动模型,这是Nginx高并发性能的基石。传统...
- Spring Boot+Vue全栈开发实战,中文版高清PDF资源
-
SpringBoot+Vue全栈开发实战,中文高清PDF资源,需要的可以私我:)SpringBoot致力于简化开发配置并为企业级开发提供一系列非业务性功能,而Vue则采用数据驱动视图的方式将程序...
- Docker-基础操作_docker基础实战教程二
-
一、镜像1、从仓库获取镜像搜索镜像:dockersearchimage_name搜索结果过滤:是否官方:dockersearch--filter="is-offical=true...
- 你有空吗?跟我一起搭个服务器好不好?
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。昨天闲的没事的时候,随手翻了翻写过的文章,发现一个很严重的问题。就是大多数时间我都在滔滔不绝的讲理论,却很少有涉及动手...
- 部署你自己的 SaaS_saas如何部署
-
部署你自己的VPNOpenVPN——功能齐全的开源VPN解决方案。(DigitalOcean教程)dockovpn.io—无状态OpenVPNdockerized服务器,不需要持久存储。...
- Docker Compose_dockercompose安装
-
DockerCompose概述DockerCompose是一个用来定义和管理多容器应用的工具,通过一个docker-compose.yml文件,用YAML格式描述服务、网络、卷等内容,...
- 京东T7架构师推出的电子版SpringBoot,从构建小系统到架构大系统
-
前言:Java的各种开发框架发展了很多年,影响了一代又一代的程序员,现在无论是程序员,还是架构师,使用这些开发框架都面临着两方面的挑战。一方面是要快速开发出系统,这就要求使用的开发框架尽量简单,无论...
- Kubernetes (k8s) 入门学习指南_k8s kubeproxy
-
Kubernetes(k8s)入门学习指南一、什么是Kubernetes?为什么需要它?Kubernetes(k8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。它...
欢迎 你 发表评论:
- 一周热门
-
-
抖音上好看的小姐姐,Python给你都下载了
-
全网最简单易懂!495页Python漫画教程,高清PDF版免费下载
-
Python 3.14 的 UUIDv6/v7/v8 上新,别再用 uuid4 () 啦!
-
python入门到脱坑 输入与输出—str()函数
-
宝塔面板如何添加免费waf防火墙?(宝塔面板开启https)
-
Python三目运算基础与进阶_python三目运算符判断三个变量
-
(新版)Python 分布式爬虫与 JS 逆向进阶实战吾爱分享
-
失业程序员复习python笔记——条件与循环
-
慕ke 前端工程师2024「完整」
-
飞牛NAS部署TVGate Docker项目,实现内网一键转发、代理、jx
-
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)
